Suppr超能文献

使用滑动带滤波器进行细胞核和细胞质联合分割。

Cell nuclei and cytoplasm joint segmentation using the sliding band filter.

机构信息

Instituto de Engenharia Biomédica (INEB), 4200-465 Porto, Portugal.

出版信息

IEEE Trans Med Imaging. 2010 Aug;29(8):1463-73. doi: 10.1109/TMI.2010.2048253. Epub 2010 Jun 3.

Abstract

Microscopy cell image analysis is a fundamental tool for biological research. In particular, multivariate fluorescence microscopy is used to observe different aspects of cells in cultures. It is still common practice to perform analysis tasks by visual inspection of individual cells which is time consuming, exhausting and prone to induce subjective bias. This makes automatic cell image analysis essential for large scale, objective studies of cell cultures. Traditionally the task of automatic cell analysis is approached through the use of image segmentation methods for extraction of cells' locations and shapes. Image segmentation, although fundamental, is neither an easy task in computer vision nor is it robust to image quality changes. This makes image segmentation for cell detection semi-automated requiring frequent tuning of parameters. We introduce a new approach for cell detection and shape estimation in multivariate images based on the sliding band filter (SBF). This filter's design makes it adequate to detect overall convex shapes and as such it performs well for cell detection. Furthermore, the parameters involved are intuitive as they are directly related to the expected cell size. Using the SBF filter we detect cells' nucleus and cytoplasm location and shapes. Based on the assumption that each cell has the same approximate shape center in both nuclei and cytoplasm fluorescence channels, we guide cytoplasm shape estimation by the nuclear detections improving performance and reducing errors. Then we validate cell detection by gathering evidence from nuclei and cytoplasm channels. Additionally, we include overlap correction and shape regularization steps which further improve the estimated cell shapes. The approach is evaluated using two datasets with different types of data: a 20 images benchmark set of simulated cell culture images, containing 1000 simulated cells; a 16 images Drosophila melanogaster Kc167 dataset containing 1255 cells, stained for DNA and actin. Both image datasets present a difficult problem due to the high variability of cell shapes and frequent cluster overlap between cells. On the Drosophila dataset our approach achieved a precision/recall of 95%/69% and 82%/90% for nuclei and cytoplasm detection respectively and an overall accuracy of 76%.

摘要

显微镜细胞图像分析是生物研究的基本工具。特别是,多元荧光显微镜用于观察培养物中细胞的不同方面。通过逐个细胞的视觉检查来执行分析任务仍然是常见的做法,这种方法既耗时又费力,容易引入主观偏见。因此,自动细胞图像分析对于大规模、客观的细胞培养研究至关重要。传统上,自动细胞分析任务是通过使用图像分割方法来提取细胞的位置和形状来完成的。图像分割虽然是基础任务,但在计算机视觉中既不容易,也不能对图像质量的变化具有鲁棒性。这使得细胞检测的图像分割需要半自动操作,并且需要频繁调整参数。我们引入了一种基于滑动带滤波器(SBF)的多元图像细胞检测和形状估计的新方法。该滤波器的设计使其能够充分检测整体凸形状,因此在细胞检测方面表现良好。此外,所涉及的参数直观,因为它们直接与预期的细胞大小相关。我们使用 SBF 滤波器检测细胞核和细胞质的位置和形状。基于每个细胞在细胞核和细胞质荧光通道中具有相同的近似形状中心的假设,我们通过核检测来引导细胞质形状估计,从而提高性能并减少误差。然后,我们通过从细胞核和细胞质通道收集证据来验证细胞检测。此外,我们还包括重叠校正和形状正则化步骤,这进一步改进了估计的细胞形状。该方法使用两个具有不同类型数据的数据集进行评估:一个包含 1000 个模拟细胞的 20 张模拟细胞培养图像基准集;一个包含 1255 个细胞的 Drosophila melanogaster Kc167 数据集,这些细胞被染成 DNA 和肌动蛋白。由于细胞形状的高度可变性以及细胞之间频繁的簇重叠,这两个图像数据集都提出了一个困难的问题。在果蝇数据集上,我们的方法在细胞核和细胞质检测方面分别实现了 95%/69%和 82%/90%的精度/召回率,总体准确率为 76%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验