School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 500-757, Korea.
Biomed Microdevices. 2012 Dec;14(6):1019-25. doi: 10.1007/s10544-012-9704-1.
For the development of bacteria-based biomedical microrobot, we propose the fabrication method of biocompatible poly(ethylene glycol) (PEG) microbeads using a cross-junction microfluidic channel. PEG droplets were polymerized by ultraviolet (UV) irradiation to form PEG microbeads of 8.18 ± 3.4 μm diameter in a microfluidic channel. Generally, the bacteria did not attach to the surface of the PEG microbeads because of their hydrophilicity. We modified the selective surface of the PEG microbeads using poly-L-lysine (PLL), promoting attenuated Salmonella typhimurium adhesion using the submerging property of PEG microbeads on agarose gel: the bacteria could thus be attached to the PLL-coated surface region of the PEG microbeads. The selectively PLL-coated PEG microbeads group showed enhanced motility compared with the PLL-uncoated and completely PLL-coated PEG microbeads groups. The selectively PLL-coated PEG microbeads group showed 12.33 and 7.40 times higher average velocities than the PLL-uncoated and completely PLL-coated PEG microbeads groups, respectively. This study verified the successful fabrication of bacteria-based microrobots using PEG microbeads, and the enhanced motility of the microrobots by selective bacteria patterning using agarose gel and PLL.
为了开发基于细菌的生物医学微型机器人,我们提出了使用十字形微流控通道制造生物相容性聚乙二醇(PEG)微球的方法。PEG 液滴通过紫外线(UV)照射聚合,在微流控通道中形成 8.18±3.4μm 直径的 PEG 微球。由于其亲水性,通常细菌不会附着在 PEG 微球的表面。我们使用聚-L-赖氨酸(PLL)修饰 PEG 微球的选择性表面,利用 PEG 微球在琼脂糖凝胶中的浸没特性促进衰减型鼠伤寒沙门氏菌的粘附:细菌可以附着在 PLL 涂层的 PEG 微球表面区域。与未涂覆 PLL 的和完全涂覆 PLL 的 PEG 微球相比,选择性涂覆 PLL 的 PEG 微球组显示出增强的运动性。选择性涂覆 PLL 的 PEG 微球组的平均速度分别比未涂覆 PLL 的和完全涂覆 PLL 的 PEG 微球组高 12.33 倍和 7.40 倍。这项研究验证了使用 PEG 微球成功制造基于细菌的微型机器人,以及通过琼脂糖凝胶和 PLL 进行选择性细菌图案化来增强微型机器人的运动性。