Department of Physics, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
J Phys Condens Matter. 2012 Nov 7;24(44):445001. doi: 10.1088/0953-8984/24/44/445001. Epub 2012 Sep 14.
The electronic and chemical structure of the metal-to-semiconductor interface was studied by photoemission spectroscopy for evaporated Cr, Ti, Al and Cu overlayers on sputter-cleaned as-deposited and thermally treated thin films of amorphous hydrogenated boron carbide (a-B(x)C:H(y)) grown by plasma-enhanced chemical vapor deposition. The films were found to contain ~10% oxygen in the bulk and to have approximate bulk stoichiometries of a-B(3)CO(0.5):H(y). Measured work functions of 4.7/4.5 eV and valence band maxima to Fermi level energy gaps of 0.80/0.66 eV for the films (as-deposited/thermally treated) led to predicted Schottky barrier heights of 1.0/0.7 eV for Cr, 1.2/0.9 eV for Ti, 1.2/0.9 eV for Al, and 0.9/0.6 eV for Cu. The Cr interface was found to contain a thick partial metal oxide layer, dominated by the wide-bandgap semiconductor Cr(2)O(3), expected to lead to an increased Schottky barrier at the junction and the formation of a space-charge region in the a-B(3)CO(0.5):H (y) layer. Analysis of the Ti interface revealed a thick layer of metal oxide, comprising metallic TiO and Ti (2)O (3), expected to decrease the barrier height. A thinner, insulating Al(2)O(3) layer was observed at the Al-to-a-B(3)CO(0.5):H(y) interface, expected to lead to tunnel junction behavior. Finally, no metal oxides or other new chemical species were evident at the Cu-to-a-B(3)CO(0.5):H(y) interface in either the core level or valence band photoemission spectra, wherein characteristic metallic Cu features were observed at very thin overlayer coverages. These results highlight the importance of thin-film bulk oxygen content on the metal-to-semiconductor junction character as well as the use of Cu as a potential Ohmic contact material for amorphous hydrogenated boron carbide semiconductor devices such as high-efficiency direct-conversion solid-state neutron detectors.
采用光电子能谱研究了蒸发 Cr、Ti、Al 和 Cu 覆盖层在溅射清洁的非晶氢化硼碳(a-B(x)C:H(y))薄膜上的金属-半导体界面的电子和化学结构,这些薄膜是通过等离子体增强化学气相沉积生长的。薄膜中含有约 10%的体氧,并且具有近似的体化学计量比 a-B(3)CO(0.5):H(y)。薄膜(未处理/热处理)的实测功函数为 4.7/4.5eV,价带最大值至费米能级能隙为 0.80/0.66eV,导致 Cr、Ti、Al 和 Cu 的预测肖特基势垒高度分别为 1.0/0.7eV、1.2/0.9eV、1.2/0.9eV 和 0.9/0.6eV。Cr 界面含有一层厚的部分金属氧化物层,主要由宽带隙半导体 Cr(2)O(3)组成,预计这将导致结处的肖特基势垒增加,并在 a-B(3)CO(0.5):H(y)层中形成空间电荷区。Ti 界面的分析表明,存在一层厚的金属氧化物层,包括金属 TiO 和 Ti(2)O(3),预计这将降低势垒高度。在 Al 与 a-B(3)CO(0.5):H(y)界面处观察到较薄的绝缘 Al(2)O(3)层,预计会导致隧道结行为。最后,在 Cu 与 a-B(3)CO(0.5):H(y)界面的芯层和价带光电子能谱中,都没有金属氧化物或其他新的化学物质,其中在非常薄的覆盖层中观察到特征性的金属 Cu 特征。这些结果强调了薄膜体氧含量对金属-半导体结特性的重要性,以及 Cu 作为非晶硅氢化硼碳半导体器件(如高效直接转换固态中子探测器)的潜在欧姆接触材料的重要性。