Michel Jonas, Splith Daniel, Rombach Julius, Papadogianni Alexandra, Berthold Theresa, Krischok Stefan, Grundmann Marius, Bierwagen Oliver, von Wenckstern Holger, Himmerlich Marcel
Institut für Physik and Institut für Mikro- und Nanotechnologien , Technische Universität Ilmenau , PF 100565, 98684 Ilmenau , Germany.
Felix Bloch Institute for Solid State Physics , Universität Leipzig , Linnéstr. 5 , 04103 Leipzig , Germany.
ACS Appl Mater Interfaces. 2019 Jul 31;11(30):27073-27087. doi: 10.1021/acsami.9b06455. Epub 2019 Jul 22.
Preparation of rectifying Schottky contacts on n-type oxide semiconductors, such as indium oxide (InO), is often challenged by the presence of a distinct surface electron accumulation layer. We investigated the material properties and electrical transport characteristics of platinum contact/indium oxide heterojunctions to define routines for the preparation of high-performance Schottky diodes on n-type oxide semiconductors. Combining the evaluation of different Pt deposition methods, such as electron-beam evaporation and (reactive) sputtering in an (O and) Ar atmosphere, with oxygen plasma interface treatments, we identify key parameters to obtain Schottky-type contacts with high electronic barrier height and high rectification ratio. Different photoelectron spectroscopy approaches are compared to characterize the chemical properties of the contact layers and the interface region toward InO, to analyze charge transfer and plasma oxidation processes as well as to evaluate the precision and limits of different methodologies to determine heterointerface energy barriers. An oxygen-plasma-induced passivation of the semiconductor surface, which induces electron depletion and generates an intrinsic interface energy barrier, is found to be not sufficient to generate rectifying platinum contacts. The dissolution of the functional interface oxide layer within the Pt film results in an energy barrier of ∼0.5 eV, which is too low for an InO electron concentration of ∼10 cm. A reactive sputter process in an Ar and O atmosphere is required to fabricate rectifying contacts that are composed of platinum oxide (PtO). Combining oxygen plasma interface oxidation of the semiconductor surface with reactive sputtering of PtO layers results in the generation of a high Schottky barrier of ∼0.9 eV and a rectification ratio of up to 10. An additional oxygen plasma treatment after contact deposition further reduced the reverse leakage current, likely by eliminating a surface conduction path between the coplanar Ohmic and Schottky contacts. We conclude that processes that allow us to increase the oxygen content in the interface and contact region are essential for fabrication of device-quality-rectifying contacts on various oxide semiconductors.
在n型氧化物半导体(如氧化铟(InO))上制备整流肖特基接触,常常受到明显的表面电子积累层的影响。我们研究了铂接触/氧化铟异质结的材料特性和电输运特性,以确定在n型氧化物半导体上制备高性能肖特基二极管的常规方法。通过将不同铂沉积方法(如电子束蒸发以及在(O和)氩气气氛中的(反应性)溅射)的评估与氧等离子体界面处理相结合,我们确定了获得具有高电子势垒高度和高整流比的肖特基型接触的关键参数。比较了不同的光电子能谱方法,以表征接触层和朝向InO的界面区域的化学性质,分析电荷转移和等离子体氧化过程,以及评估不同方法确定异质界面能垒的精度和局限性。发现氧等离子体诱导的半导体表面钝化,即诱导电子耗尽并产生本征界面能垒,不足以产生整流铂接触。Pt膜内功能界面氧化层的溶解导致约0.5 eV的能垒,对于约10 cm的InO电子浓度来说太低。需要在氩气和氧气气氛中进行反应性溅射工艺来制造由氧化铂(PtO)组成的整流接触。将半导体表面的氧等离子体界面氧化与PtO层的反应性溅射相结合,可产生约0.9 eV的高肖特基势垒和高达10的整流比。接触沉积后的额外氧等离子体处理进一步降低了反向漏电流,这可能是通过消除共面欧姆接触和肖特基接触之间的表面传导路径实现的。我们得出结论,对于在各种氧化物半导体上制造器件质量的整流接触而言,能够增加界面和接触区域中氧含量的工艺至关重要。