Suppr超能文献

具有受控方向依赖性附着的仿生表面。

Biomimetic surfaces with controlled direction-dependent adhesion.

机构信息

Dipartimento di Ingegneria Meccanica e Gestionale, TriboLAB, Politecnico di Bari, V.le Japigia 182, 70126 Bari, Italy.

出版信息

J R Soc Interface. 2012 Dec 7;9(77):3359-65. doi: 10.1098/rsif.2012.0452. Epub 2012 Sep 12.

Abstract

We propose a novel design of a biomimetic micro-structured surface, which exhibits controlled strongly direction-dependent adhesion properties. The micro-system consists of parallel elastic wall-like structures covered by a thin layer. Numerical calculations have been carried out to study the adhesive properties of the proposed system and to provide design criteria with the aim of obtaining optimized geometries. A numerically equivalent version of the double cantilever beam fracture experiment is, then, simulated by means of finite element analysis to investigate the anisotropic adhesion of the structure. We find that, because of inherent crack trapping properties of these types of structures, the wall-like geometry allows us to strongly enhance adhesion when the detachment direction is perpendicular to the walls. On the other hand, when the detachment occurs parallel to the walls, the system shows low adhesion. This controlled direction-dependent adhesive property of the proposed structure solves one of the key problems of biomimetic adhesive surfaces, which usually show very strong adhesion, even larger than biological systems, but are not suitable for object manipulation and locomotion, as detachment always occurs at high loads and cannot be controlled.

摘要

我们提出了一种仿生微结构表面的新颖设计,该表面具有可控的强烈各向异性粘附特性。微系统由平行的弹性壁状结构组成,这些结构覆盖有一层薄膜。已经进行了数值计算,以研究所提出系统的粘附特性,并提供设计标准,旨在获得优化的几何形状。通过有限元分析模拟了等效于双悬臂梁断裂实验的数值版本,以研究结构的各向异性粘附。我们发现,由于这些类型结构的固有裂纹捕获特性,壁状几何形状允许我们在脱离方向垂直于壁时强烈增强粘附。另一方面,当脱离发生在平行于壁的方向上时,系统表现出低粘附力。所提出结构的这种可控的各向异性粘附特性解决了仿生粘附表面的一个关键问题,即通常表现出非常强的粘附力,甚至比生物系统还要大,但不适合物体操纵和运动,因为脱离总是在高负载下发生,并且无法控制。

相似文献

1
Biomimetic surfaces with controlled direction-dependent adhesion.具有受控方向依赖性附着的仿生表面。
J R Soc Interface. 2012 Dec 7;9(77):3359-65. doi: 10.1098/rsif.2012.0452. Epub 2012 Sep 12.
7
10
Biologically inspired crack trapping for enhanced adhesion.受生物启发的裂纹捕获以增强附着力。
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10786-91. doi: 10.1073/pnas.0703762104. Epub 2007 Jun 20.

引用本文的文献

本文引用的文献

1
Sticky bio-inspired micropillars: finding the best shape.粘性仿生微柱:寻找最佳形状。
Small. 2012 May 7;8(9):1449-54. doi: 10.1002/smll.201102021. Epub 2012 Mar 1.
5
Suction component in adhesion of mushroom-shaped microstructure.蘑菇状微结构粘附中的吸力组件。
J R Soc Interface. 2011 Apr 6;8(57):585-9. doi: 10.1098/rsif.2010.0420. Epub 2010 Sep 8.
8
Biologically inspired crack trapping for enhanced adhesion.受生物启发的裂纹捕获以增强附着力。
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10786-91. doi: 10.1073/pnas.0703762104. Epub 2007 Jun 20.
9
Biomimetic mushroom-shaped fibrillar adhesive microstructure.仿生蘑菇状纤维状粘附微观结构
J R Soc Interface. 2007 Apr 22;4(13):271-5. doi: 10.1098/rsif.2006.0164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验