Suppr超能文献

跨 1,N6-(2-羟基-3-羟甲基丙基-1,3-二基)-2'-脱氧腺苷(1,N6-γ-HMHP-dA)加合物的人类和古细菌 DNA 聚合酶的转位合成。

Translesion synthesis across 1,N6-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N6-γ-HMHP-dA) adducts by human and archebacterial DNA polymerases.

机构信息

Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

J Biol Chem. 2012 Nov 9;287(46):38800-11. doi: 10.1074/jbc.M112.396788. Epub 2012 Sep 13.

Abstract

The 1,N(6)-(2-hydroxy-3-hydroxymethylpropan-1,3-diyl)-2'-deoxyadenosine (1,N(6)-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N(6)-propano group on 1,N(6)-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N(6)-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) β, η, κ, and ι and archebacterial polymerase Dpo4 was investigated. Run-on gel analysis with all four dNTPs revealed that hpol η, κ, and Dpo4 were able to copy the modified template. In contrast, hpol ι inserted a single base opposite 1,N(6)-γ-HMHP-dA but was unable to extend beyond the damaged site, and a complete replication block was observed with hpol β. Single nucleotide incorporation experiments indicated that although hpol η, κ, and Dpo4 incorporated the correct nucleotide (dTMP) opposite the lesion, dGMP and dAMP were inserted with a comparable frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed the ability of bypass polymerases to insert dTMP, dAMP, or dGMP opposite 1,N(6)-γ-HMHP-dA and detected large amounts of -1 and -2 deletion products. Taken together, these results indicate that hpol η and κ enzymes bypass 1,N(6)-γ-HMHP-dA lesions in an error-prone fashion, potentially contributing to A→T and A→C transversions and frameshift mutations observed in cells following treatment with 1,2,3,4-diepoxybutane.

摘要

1,N(6)-(2-羟基-3-羟甲基丙-1,3-二基)-2'-脱氧腺苷(1,N(6)-γ-HMHP-dA)加合物是由 1,2,3,4-二环氧丁烷双功能烷基化 DNA 中的腺嘌呤碱基形成的,1,2,3,4-二环氧丁烷是 1,3-丁二烯的潜在致癌代谢物。预计 1,N(6)-γ-HMHP-dA 上取代的 1,N(6)-丙酰基会阻止加合腺嘌呤与胸腺嘧啶的 Watson-Crick 碱基配对,可能导致突变。在这项研究中,研究了在人 DNA 聚合酶(hpols)β、η、κ 和 ι 以及古细菌聚合酶 Dpo4 的存在下,复制特定位置的 1,N(6)-γ-HMHP-dA 损伤的酶学。使用所有四种 dNTP 的运行凝胶分析显示,hpol η、κ 和 Dpo4 能够复制修饰的模板。相比之下,hpol ι 在 1,N(6)-γ-HMHP-dA 对面插入一个碱基,但无法延伸超过受损部位,而 hpol β 观察到完全复制阻断。单核苷酸掺入实验表明,尽管 hpol η、κ 和 Dpo4 在损伤部位对面掺入正确的核苷酸(dTMP),但 dGMP 和 dAMP 的插入频率相当。引物延伸产物的 HPLC-ESI-MS/MS 分析证实了旁路聚合酶在 1,N(6)-γ-HMHP-dA 对面插入 dTMP、dAMP 或 dGMP 的能力,并检测到大量-1 和-2 缺失产物。总之,这些结果表明 hpol η 和 κ 酶以易错的方式绕过 1,N(6)-γ-HMHP-dA 损伤,可能导致在 1,2,3,4-二环氧丁烷处理后细胞中观察到的 A→T 和 A→C 颠换和移码突变。

相似文献

2
Polymerase Bypass of N(6)-Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene.
Chem Res Toxicol. 2015 Jul 20;28(7):1496-507. doi: 10.1021/acs.chemrestox.5b00166. Epub 2015 Jul 6.
7
Formation of S-[2-(N-Deoxyadenosinyl)ethyl]glutathione in DNA and Replication Past the Adduct by Translesion DNA Polymerases.
Chem Res Toxicol. 2017 May 15;30(5):1188-1196. doi: 10.1021/acs.chemrestox.7b00022. Epub 2017 Apr 14.
9
Replication, repair, and translesion polymerase bypass of N⁶-oxopropenyl-2'-deoxyadenosine.
Biochemistry. 2013 Dec 3;52(48):8766-76. doi: 10.1021/bi401103k. Epub 2013 Nov 15.
10
Translesion synthesis of 6-nitrochrysene-derived 2'-deoxyadenosine adduct in human cells.
DNA Repair (Amst). 2020 Nov;95:102935. doi: 10.1016/j.dnarep.2020.102935. Epub 2020 Jul 18.

引用本文的文献

2
Polymerase bypass of N7-guanine monoadducts of cisplatin, diepoxybutane, and epichlorohydrin.
Mutat Res. 2018 May;809:6-12. doi: 10.1016/j.mrfmmm.2018.03.002. Epub 2018 Mar 20.
4
Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases.
J Biol Chem. 2016 Nov 4;291(45):23589-23603. doi: 10.1074/jbc.M116.745257. Epub 2016 Sep 12.
5
Base Excision Repair of N-Deoxyadenosine Adducts of 1,3-Butadiene.
Biochemistry. 2016 Nov 1;55(43):6070-6081. doi: 10.1021/acs.biochem.6b00553. Epub 2016 Oct 21.
6
Polymerase Bypass of N(6)-Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene.
Chem Res Toxicol. 2015 Jul 20;28(7):1496-507. doi: 10.1021/acs.chemrestox.5b00166. Epub 2015 Jul 6.
7
Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine.
J Biol Chem. 2015 Jan 9;290(2):775-87. doi: 10.1074/jbc.M114.613638. Epub 2014 Nov 12.
9
NanoLC/ESI+ HRMS3 quantitation of DNA adducts induced by 1,3-butadiene.
J Am Soc Mass Spectrom. 2014 Jul;25(7):1124-35. doi: 10.1007/s13361-014-0916-x. Epub 2014 May 28.

本文引用的文献

1
Persistence and repair of bifunctional DNA adducts in tissues of laboratory animals exposed to 1,3-butadiene by inhalation.
Chem Res Toxicol. 2011 Jun 20;24(6):809-17. doi: 10.1021/tx200009b. Epub 2011 Apr 13.
2
1,3-Butadiene: Biomarkers and application to risk assessment.
Chem Biol Interact. 2011 Jun 30;192(1-2):150-4. doi: 10.1016/j.cbi.2010.10.010. Epub 2010 Oct 23.
3
Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.
J Biol Chem. 2010 Dec 24;285(52):40666-72. doi: 10.1074/jbc.M110.183665. Epub 2010 Oct 20.
4
Bypass of N²-ethylguanine by human DNA polymerase κ.
DNA Repair (Amst). 2011 Jan 2;10(1):56-64. doi: 10.1016/j.dnarep.2010.09.007. Epub 2010 Oct 16.
7
DNA-protein cross-linking by 1,2,3,4-diepoxybutane.
J Proteome Res. 2010 Sep 3;9(9):4356-67. doi: 10.1021/pr1000835.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验