Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
J Biol Chem. 2012 Nov 9;287(46):39070-82. doi: 10.1074/jbc.M112.404434. Epub 2012 Sep 13.
We have used fluorescence spectroscopy, molecular modeling, and limited proteolysis to examine structural dynamics of the sarcoplasmic reticulum Ca-ATPase (SERCA). The Ca-ATPase in sarcoplasmic reticulum vesicles from fast twitch muscle (SERCA1a isoform) was selectively labeled with fluorescein isothiocyanate (FITC), a probe that specifically reacts with Lys-515 in the nucleotide-binding site. Conformation-specific proteolysis demonstrated that FITC labeling does not induce closure of the cytoplasmic headpiece, thereby assigning FITC-SERCA as a nucleotide-free enzyme. We used enzyme reverse mode to synthesize FITC monophosphate (FMP) on SERCA, producing a phosphorylated pseudosubstrate tethered to the nucleotide-binding site of a Ca(2+)-free enzyme (E2 state to prevent FMP hydrolysis). Conformation-specific proteolysis demonstrated that FMP formation induces SERCA headpiece closure similar to ATP binding, presumably due to the high energy phosphoryl group on the fluorescent probe (ATP·E2 analog). Subnanosecond-resolved detection of fluorescence lifetime, anisotropy, and quenching was used to characterize FMP-SERCA (ATP·E2 state) versus FITC-SERCA in Ca(2+)-free, Ca(2+)-bound, and actively cycling phosphoenzyme states (E2, E1, and EP). Time-resolved spectroscopy revealed that FMP-SERCA exhibits increased probe dynamics but decreased probe accessibility compared with FITC-SERCA, indicating that ATP exhibits enhanced dynamics within a closed cytoplasmic headpiece. Molecular modeling was used to calculate the solvent-accessible surface area of FITC and FMP bound to SERCA crystal structures, revealing a positive correlation of solvent-accessible surface area with quenching but not anisotropy. Thus, headpiece closure is coupled to substrate binding but not active site dynamics. We propose that dynamics in the nucleotide-binding site of SERCA is important for Ca(2+) binding (distal allostery) and phosphoenzyme formation (direct activation).
我们使用荧光光谱学、分子建模和有限的蛋白水解来研究肌浆网 Ca-ATP 酶(SERCA)的结构动力学。来自快肌的肌浆网小泡中的 Ca-ATP 酶(SERCA1a 同工型)被异硫氰酸荧光素(FITC)选择性标记,FITC 是一种与核苷酸结合位点中的 Lys-515 特异性反应的探针。构象特异性蛋白水解表明 FITC 标记不会诱导细胞质头部的闭合,从而将 FITC-SERCA 鉴定为无核苷酸酶。我们使用酶的反向模式在 SERCA 上合成 FITC 单磷酸(FMP),产生与无 Ca2+酶(E2 状态以防止 FMP 水解)的核苷酸结合位点相连的磷酸化伪底物。构象特异性蛋白水解表明 FMP 的形成诱导 SERCA 头部的闭合类似于 ATP 结合,推测是由于荧光探针上的高能磷酸基团(ATP·E2 类似物)。亚纳秒分辨率的荧光寿命、各向异性和猝灭的检测用于表征无 Ca2+、有 Ca2+和活性循环磷酸化酶状态(E2、E1 和 EP)下的 FMP-SERCA(ATP·E2 状态)与 FITC-SERCA。时间分辨光谱学显示,与 FITC-SERCA 相比,FMP-SERCA 表现出增加的探针动力学但降低的探针可及性,表明在封闭的细胞质头部中,ATP 表现出增强的动力学。分子建模用于计算 SERCA 晶体结构中结合的 FITC 和 FMP 的溶剂可及表面积,发现溶剂可及表面积与猝灭呈正相关但与各向异性无关。因此,头部的闭合与底物结合而不是活性位点动力学相关。我们提出,SERCA 核苷酸结合位点的动力学对于 Ca2+结合(远端变构)和磷酸化酶形成(直接激活)很重要。