Suppr超能文献

双相 I 障碍伴精神病病史患者的额前皮质和额眶皮质连接异常。

Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history.

机构信息

Department of Psychiatry, Yale University School of Medicine, Yale University, New Haven, CT 06519, USA.

出版信息

Biol Psychiatry. 2013 Mar 15;73(6):565-73. doi: 10.1016/j.biopsych.2012.07.031. Epub 2012 Sep 11.

Abstract

BACKGROUND

Pathophysiological models of bipolar disorder postulate that mood dysregulation arises from fronto-limbic dysfunction, marked by reduced prefrontal cortex (PFC) inhibitory control. This might occur due to both disruptions within PFC networks and abnormal inhibition over subcortical structures involved in emotional processing. However, no study has examined global PFC dysconnectivity in bipolar disorder and tested whether regions with within-PFC dysconnectivity also exhibit fronto-limbic connectivity deficits. Furthermore, no study has investigated whether such connectivity disruptions differ for bipolar patients with psychosis history, who might exhibit a more severe clinical course.

METHODS

We collected resting-state functional magnetic resonance imaging at 3T in 68 remitted bipolar I patients (34 with psychosis history) and 51 demographically matched healthy participants. We employed a recently developed global brain connectivity method, restricted to PFC (rGBC). We also independently tested connectivity between anatomically defined amygdala and PFC.

RESULTS

Bipolar patients exhibited reduced medial prefrontal cortex (mPFC) rGBC, increased amygdala-mPFC connectivity, and reduced connectivity between amygdala and dorsolateral PFC. All effects were driven by psychosis history. Moreover, the magnitude of observed effects was significantly associated with lifetime psychotic symptom severity.

CONCLUSIONS

This convergence between rGBC, seed-based amygdala findings, and symptom severity analyses highlights that mPFC, a core emotion regulation region, exhibits both within-PFC dysconnectivity and connectivity abnormalities with limbic structures in bipolar illness. Furthermore, lateral PFC dysconnectivity in patients with psychosis history converges with published work in schizophrenia, indicating possible shared risk factors. Observed dysconnectivity in remitted patients suggests a bipolar trait characteristic and might constitute a risk factor for phasic features of the disorder.

摘要

背景

双相情感障碍的病理生理学模型假设情绪调节障碍源于额 - 边缘功能障碍,表现为前额叶皮层(PFC)抑制控制能力降低。这可能是由于 PFC 网络内的中断以及涉及情绪处理的皮质下结构的异常抑制所致。但是,尚无研究检查过双相情感障碍中的全局 PFC 去连接,并测试了具有 PFC 内去连接的区域是否也存在额 - 边缘连接缺陷。此外,尚无研究调查过具有精神病病史的双相情感障碍患者是否存在这种连接破坏,这些患者可能表现出更严重的临床病程。

方法

我们在 3T 磁共振扫描仪上收集了 68 名缓解期的双相情感障碍 I 型患者(34 名有精神病病史)和 51 名年龄匹配的健康对照者的静息状态功能磁共振成像数据。我们采用了一种新的全局脑连接方法,仅限于 PFC(rGBC)。我们还独立测试了杏仁核和 PFC 之间的连接。

结果

双相情感障碍患者的内侧前额叶皮层(mPFC)rGBC 降低,杏仁核 - mPFC 连接增加,杏仁核与背外侧 PFC 的连接减少。所有这些影响都与精神病病史有关。此外,观察到的效应幅度与一生中精神病症状的严重程度显著相关。

结论

rGBC、基于种子的杏仁核发现以及症状严重程度分析之间的这种收敛性突出表明,mPFC 作为核心情绪调节区域,在双相情感障碍中既表现出 PFC 内的去连接,又表现出与边缘结构的连接异常。此外,有精神病病史的患者的外侧 PFC 去连接与精神分裂症的已发表研究结果相吻合,表明可能存在共同的风险因素。在缓解期患者中观察到的连接异常表明这是双相情感障碍的一种特征,可能是该疾病发作特征的一个危险因素。

相似文献

7
Functional Connectivity of the Striatum in Schizophrenia and Psychotic Bipolar Disorder.精神分裂症和精神病性双相障碍患者纹状体的功能连接。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2019 Nov;4(11):956-965. doi: 10.1016/j.bpsc.2019.05.017. Epub 2019 Jun 12.

引用本文的文献

3
Mesocorticolimbic circuit mechanisms of social dominance behavior.社会优势行为的中脑皮质边缘回路机制。
Exp Mol Med. 2024 Sep;56(9):1889-1899. doi: 10.1038/s12276-024-01299-8. Epub 2024 Sep 2.

本文引用的文献

2
Neural circuits underlying the pathophysiology of mood disorders.心境障碍病理生理学的神经回路。
Trends Cogn Sci. 2012 Jan;16(1):61-71. doi: 10.1016/j.tics.2011.12.011. Epub 2011 Dec 21.
3
Spatio-temporal transcriptome of the human brain.人类大脑的时空转录组。
Nature. 2011 Oct 26;478(7370):483-9. doi: 10.1038/nature10523.
8
Variable global dysconnectivity and individual differences in schizophrenia.精神分裂症的可变全局连接断开和个体差异。
Biol Psychiatry. 2011 Jul 1;70(1):43-50. doi: 10.1016/j.biopsych.2011.02.010. Epub 2011 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验