Soleimani Najme, Iraji Armin, Pearlson Godfrey, Preda Adrian, Calhoun Vince D
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.
Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA.
bioRxiv. 2024 Aug 2:2024.08.01.606076. doi: 10.1101/2024.08.01.606076.
Mental illnesses extract a high personal and societal cost, and thus explorations of the links between mental illness and functional connectivity in the brain are critical. Investigating major mental illnesses, believed to arise from disruptions in sophisticated neural connections, allows us to comprehend how these neural network disruptions may be linked to altered cognition, emotional regulation, and social interactions. Although neuroimaging has opened new avenues to explore neural alterations linked to mental illnesses, the field still requires precise and sensitive methodologies to inspect these neural substrates of various psychological disorders. In this study, we employ a hierarchical methodology to derive double functionally independent primitives (dFIPs) from resting state functional magnetic resonance neuroimaging data (rs-fMRI). These dFIPs encapsulate canonical overlapping patterns of functional network connectivity (FNC) within the brain. Our investigation focuses on the examination of how combinations of these dFIPs relate to different mental disorder diagnoses. The central aim is to unravel the complex patterns of FNC that correspond to the diverse manifestations of mental illnesses. To achieve this objective, we used a large brain imaging dataset from multiple sites, comprising 5805 total individuals diagnosed with schizophrenia (SCZ), autism spectrum disorder (ASD), bipolar disorder (BPD), major depressive disorder (MDD), and controls. The key revelations of our study unveil distinct patterns associated with each mental disorder through the combination of dFIPs. Notably, certain individual dFIPs exhibit disorder-specific characteristics, while others demonstrate commonalities across disorders. This approach offers a novel, data-driven synthesis of intricate neuroimaging data, thereby illuminating the functional changes intertwined with various mental illnesses. Our results show distinct signatures associated with psychiatric disorders, revealing unique connectivity patterns such as heightened cerebellar connectivity in SCZ and sensory domain hyperconnectivity in ASD, both contrasted with reduced cerebellar-subcortical connectivity. Utilizing the dFIP concept, we pinpoint specific functional connections that differentiate healthy controls from individuals with mental illness, underscoring its utility in identifying neurobiological markers. In summary, our findings delineate how dFIPs serve as unique fingerprints for different mental disorders.
精神疾病会带来高昂的个人和社会成本,因此探索精神疾病与大脑功能连接之间的联系至关重要。研究被认为源于复杂神经连接中断的主要精神疾病,能让我们理解这些神经网络中断如何与认知改变、情绪调节和社交互动相关联。尽管神经影像学为探索与精神疾病相关的神经改变开辟了新途径,但该领域仍需要精确且灵敏的方法来检查各种心理障碍的这些神经基础。在本研究中,我们采用一种分层方法从静息态功能磁共振神经影像数据(rs-fMRI)中推导双功能独立基元(dFIPs)。这些dFIPs封装了大脑内功能网络连接(FNC)的典型重叠模式。我们的研究重点是考察这些dFIPs的组合如何与不同的精神障碍诊断相关。核心目标是揭示与精神疾病多样表现相对应的FNC复杂模式。为实现这一目标,我们使用了来自多个站点的大型脑成像数据集,总共包括5805名被诊断患有精神分裂症(SCZ)、自闭症谱系障碍(ASD)、双相情感障碍(BPD)、重度抑郁症(MDD)的个体以及对照组。我们研究的关键发现通过dFIPs的组合揭示了与每种精神障碍相关的独特模式。值得注意的是,某些单个dFIPs呈现出特定障碍的特征,而其他一些则显示出不同障碍之间的共性。这种方法提供了一种新颖的、数据驱动的复杂神经影像数据综合方式,从而阐明了与各种精神疾病交织在一起的功能变化。我们的结果显示了与精神疾病相关的独特特征,揭示了独特的连接模式,如精神分裂症中小脑连接增强以及自闭症谱系障碍中感觉域超连接,两者都与小脑 - 皮层下连接减少形成对比。利用dFIP概念,我们确定了区分健康对照组与患有精神疾病个体的特定功能连接,强调了其在识别神经生物学标志物方面的效用。总之,我们的发现描绘了dFIPs如何作为不同精神障碍的独特指纹。