Suppr超能文献

严重脊髓损伤后用纤维蛋白和生长因子混合物促进神经干细胞的存活和分化

Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury.

作者信息

Lu Paul, Graham Lori, Wang Yaozhi, Wu Di, Tuszynski Mark

机构信息

Veterans Administration Medical Center, San Diego; Department of Neurosciences, University of California, San Diego;

Department of Neurosciences, University of California, San Diego.

出版信息

J Vis Exp. 2014 Jul 27(89):e50641. doi: 10.3791/50641.

Abstract

Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings.

摘要

神经干细胞(NSCs)能够自我更新并分化为神经元和神经胶质细胞。移植的神经干细胞可在脊髓损伤(SCI)后替代丢失的神经元和神经胶质细胞,并能形成功能性中继以重新连接损伤部位上下的脊髓节段。以往移植神经干细胞的研究受到脊髓损伤腔内移植细胞存活不完全的限制。此外,对移植细胞存活、分化及突起延伸的追踪尚未得到优化。最后,在以往研究中,通常报道培养的大鼠神经干细胞移植到损伤脊髓后会分化为神经胶质细胞而非神经元,除非其命运被驱动至特定细胞类型。为解决这些问题,我们开发了新方法来提高神经干细胞在严重脊髓损伤部位的存活、整合及分化能力。从表达绿色荧光蛋白(GFP)的稳定转基因Fischer 344大鼠品系的胚胎第14天脊髓(E14)中新鲜分离神经干细胞,并将其嵌入含有生长因子的纤维蛋白基质中;该制剂旨在将移植细胞保留在损伤腔内并支持细胞存活。在胸段3(T3)完全脊髓横断两周后,将纤维蛋白/生长因子混合物中的神经干细胞植入,从而避开炎症高峰期。所得移植物完全填充损伤腔,并分化为神经元和神经胶质细胞,其中神经元将轴突显著长距离地延伸至宿主脊髓中。表达GFP的培养人神经干细胞移植物也得到了类似结果。因此,确定了改善神经干细胞移植、存活及体内研究结果分析的方法。

相似文献

2
Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury.
Exp Neurol. 2017 May;291:87-97. doi: 10.1016/j.expneurol.2017.02.007. Epub 2017 Feb 9.
4
Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord.
Exp Neurol. 2019 Apr;314:46-57. doi: 10.1016/j.expneurol.2019.01.006. Epub 2019 Jan 15.
5
Long-distance growth and connectivity of neural stem cells after severe spinal cord injury.
Cell. 2012 Sep 14;150(6):1264-73. doi: 10.1016/j.cell.2012.08.020.
6
A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury.
Exp Neurol. 2014 Jul;257:186-204. doi: 10.1016/j.expneurol.2014.04.008. Epub 2014 Apr 18.
7
Long-term fate of allogeneic neural stem cells following transplantation into injured spinal cord.
Stem Cell Rev Rep. 2010 Mar;6(1):121-36. doi: 10.1007/s12015-009-9104-y.
8
Myelination of axons emerging from neural progenitor grafts after spinal cord injury.
Exp Neurol. 2017 Oct;296:69-73. doi: 10.1016/j.expneurol.2017.07.005. Epub 2017 Jul 8.

引用本文的文献

3
Clickable Granular Hydrogel Scaffolds for Delivery of Neural Progenitor Cells to Sites of Spinal Cord Injury.
Adv Healthc Mater. 2024 Oct;13(25):e2303912. doi: 10.1002/adhm.202303912. Epub 2024 Mar 24.
6
Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
Int J Mol Sci. 2023 Jan 28;24(3):2528. doi: 10.3390/ijms24032528.
7
Cell transplantation to repair the injured spinal cord.
Int Rev Neurobiol. 2022;166:79-158. doi: 10.1016/bs.irn.2022.09.008. Epub 2022 Nov 9.
8
Transplantation of neuron-inducing grafts embedding positively charged gold nanoparticles for the treatment of spinal cord injury.
Bioeng Transl Med. 2022 Apr 18;7(3):e10326. doi: 10.1002/btm2.10326. eCollection 2022 Sep.
10
The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review.
Int J Mol Sci. 2022 Jan 23;23(3):1244. doi: 10.3390/ijms23031244.

本文引用的文献

1
Long-distance growth and connectivity of neural stem cells after severe spinal cord injury.
Cell. 2012 Sep 14;150(6):1264-73. doi: 10.1016/j.cell.2012.08.020.
2
Building bridges for spinal cord repair.
Cell. 2012 Sep 14;150(6):1105-6. doi: 10.1016/j.cell.2012.08.025.
3
New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy.
Transgenic Res. 2010 Oct;19(5):745-63. doi: 10.1007/s11248-009-9352-2. Epub 2010 Jan 22.
5
Neurotrophic factors improve motoneuron survival and function of muscle reinnervated by embryonic neurons.
J Neuropathol Exp Neurol. 2009 Jul;68(7):736-46. doi: 10.1097/NEN.0b013e3181a9360f.
7
Preparing e18 cortical rat neurons for compartmentalization in a microfluidic device.
J Vis Exp. 2007(8):305. doi: 10.3791/305. Epub 2007 Oct 1.
8
Reestablishment of damaged adult motor pathways by grafted embryonic cortical neurons.
Nat Neurosci. 2007 Oct;10(10):1294-9. doi: 10.1038/nn1970. Epub 2007 Sep 2.
9
The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds.
Stem Cells. 2007 Sep;25(9):2235-44. doi: 10.1634/stemcells.2007-0111. Epub 2007 Jun 21.
10
Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord.
PLoS Med. 2007 Feb;4(2):e39. doi: 10.1371/journal.pmed.0040039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验