Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), Box 870202, The University of Alabama, Tuscaloosa, Alabama 35487, USA.
ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5590-607. doi: 10.1021/am301488c. Epub 2012 Oct 1.
Fabrication of oxide nanowire heterostructures with controlled morphology, interface, and phase purity is critical for high-efficiency and low-cost photocatalysis. Here, we have studied the formation of copper oxide-cobalt nanowire heterostructures by sputtering and subsequent air annealing to result in cobalt oxide (Co(3)O(4))-coated CuO nanowires. This approach allowed fabrication of standing nanowire heterostructures with tunable compositions and morphologies. The vertically standing CuO nanowires were synthesized in a thermal growth method. The shell growth kinetics of Co and Co(3)O(4) on CuO nanowires, morphological evolution of the shell, and nanowire self-shadowing effects were found to be strongly dependent on sputtering duration, air-annealing conditions, and alignment of CuO nanowires. Finite element method (FEM) analysis indicated that alignment and stiffness of CuO-Co nanowire heterostructures greatly influenced the nanomechanical aspects such as von Mises equivalent stress distribution and bending of nanowire heterostructures during the Co deposition process. This fundamental knowledge was critical for the morphological control of Co and Co(3)O(4) on CuO nanowires with desired interfaces and a uniform coating. Band gap energies and phenol photodegradation capability of CuO-Co(3)O(4) nanowire heterostructures were studied as a function of Co(3)O(4) morphology. Multiple absorption edges and band gap tailings were observed for these heterostructures, indicating photoactivity from visible to UV range. A polycrystalline Co(3)O(4) shell on CuO nanowires showed the best photodegradation performance (efficiency 50-90%) in a low-powered UV or visible light illumination with a sacrificial agent (H(2)O(2)). An anomalously high efficiency (67.5%) observed under visible light without sacrificial agent for CuO nanowires coated with thin (∼5.6 nm) Co(3)O(4) shell and nanoparticles was especially interesting. Such photoactive heterostructures demonstrate unique sacrificial agent-free, robust, and efficient photocatalysts promising for organic decontamination and environmental remediation.
氧化物纳米线异质结构的可控形态、界面和相纯度的制造对于高效、低成本的光催化至关重要。在这里,我们通过溅射和随后的空气退火研究了氧化铜-氧化钴纳米线异质结构的形成,导致了氧化钴(Co(3)O(4))涂覆的 CuO 纳米线。这种方法允许制造具有可调组成和形态的直立纳米线异质结构。垂直站立的 CuO 纳米线是通过热生长法合成的。Co 和 Co(3)O(4)在 CuO 纳米线上的壳层生长动力学、壳层的形态演变以及纳米线自阴影效应被发现强烈依赖于溅射持续时间、空气退火条件以及 CuO 纳米线的排列。有限元法(FEM)分析表明,CuO-Co 纳米线异质结构的排列和刚度极大地影响了纳米机械方面,如在 Co 沉积过程中 von Mises 等效应力分布和纳米线异质结构的弯曲。这种基本知识对于具有所需界面和均匀涂层的 CuO 纳米线的 Co 和 Co(3)O(4)的形态控制至关重要。CuO-Co(3)O(4)纳米线异质结构的能带隙能量和苯酚光降解能力作为 Co(3)O(4)形态的函数进行了研究。这些异质结构观察到多个吸收边缘和能带隙尾部,表明其光活性从可见光到 UV 范围。CuO 纳米线上的多晶 Co(3)O(4)壳表现出最佳的光降解性能(效率约为 50-90%),在低功率 UV 或可见光照射下,带有牺牲剂(H(2)O(2))。CuO 纳米线涂覆薄(约 5.6nm)Co(3)O(4)壳和纳米颗粒在可见光下无牺牲剂的情况下观察到异常高的效率(约 67.5%)特别有趣。这种光活性异质结构展示了独特的无牺牲剂、稳健和高效的光催化剂,有望用于有机净化和环境修复。