Suppr超能文献

利用改进的 PSSM 轮廓和集成支持向量机预测黄素单核苷酸结合位点。

Prediction of flavin mono-nucleotide binding sites using modified PSSM profile and ensemble support vector machine.

机构信息

College of Chemistry, Sichuan University, Chengdu 610064, PR China.

出版信息

Comput Biol Med. 2012 Nov;42(11):1053-9. doi: 10.1016/j.compbiomed.2012.08.005. Epub 2012 Sep 14.

Abstract

Flavin mono-nucleotide (FMN) closely evolves in many biological processes. In this study, a computational method was proposed to identify FMN binding sites based on amino acid sequences of proteins only. A modified Position Specific Score Matrix was used to characterize the local environmental sequence information, and a visible improvement of performance was obtained. Also, the ensemble SVM was applied to solve the imbalanced data problem. Additionally, an independent dataset was built to evaluate the practical performance of the method, and a satisfactory accuracy of 87.87% was achieved. It demonstrates that the method is effective in predicting FMN-binding sites.

摘要

黄素单核苷酸(FMN)在许多生物过程中密切进化。在这项研究中,提出了一种仅基于蛋白质氨基酸序列识别 FMN 结合位点的计算方法。使用改进的位置特异性评分矩阵来描述局部环境序列信息,从而获得了性能的显著提高。此外,还应用了集成 SVM 来解决不平衡数据问题。此外,构建了一个独立的数据集来评估该方法的实际性能,达到了 87.87%的令人满意的准确率。这表明该方法在预测 FMN 结合位点方面是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验