IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2189-2197. doi: 10.1109/TCBB.2019.2932416. Epub 2021 Dec 8.
Flavin mono-nucleotides (FMNs) are cofactors that hold responsibility for carrying and transferring electrons in the electron transport chain stage of cellular respiration. Without being facilitated by FMNs, energy production is stagnant due to the interruption in most of the cellular processes. Investigation on FMN's functions, therefore, can gain holistic understanding about human diseases and molecular information on drug targets. We proposed a deep learning model using a two-dimensional convolutional neural network and position specific scoring matrices that could identify FMN interacting residues with the sensitivity of 83.7 percent, specificity of 99.2 percent, accuracy of 98.2 percent, and Matthews correlation coefficients of 0.85 for an independent dataset containing 141 FMN binding sites and 1,920 non-FMN binding sites. The proposed method outperformed other previous studies using similar evaluation metrics. Our positive outcome can also promote the utilization of deep learning in dealing with various problems in bioinformatics and computational biology.
黄素单核苷酸(FMN)是一种辅酶,负责在细胞呼吸的电子传递链阶段携带和转移电子。如果没有 FMN 的协助,由于大多数细胞过程的中断,能量产生将停滞不前。因此,对 FMN 功能的研究可以全面了解人类疾病和药物靶点的分子信息。我们提出了一种使用二维卷积神经网络和位置特异性评分矩阵的深度学习模型,该模型可以识别 FMN 相互作用残基,对包含 141 个 FMN 结合位点和 1920 个非 FMN 结合位点的独立数据集的敏感性为 83.7%,特异性为 99.2%,准确性为 98.2%,马修斯相关系数为 0.85。与使用类似评估指标的其他先前研究相比,该方法表现出色。我们的积极结果也可以促进深度学习在处理生物信息学和计算生物学中各种问题中的应用。