Suppr超能文献

通过质子检测光谱法对膜蛋白和蛋白聚集体的固态 NMR 分析。

Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy.

机构信息

Department of Physics, Oklahoma State University, Stillwater, OK 74074, USA.

出版信息

J Biomol NMR. 2012 Nov;54(3):291-305. doi: 10.1007/s10858-012-9672-z. Epub 2012 Sep 18.

Abstract

Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H-N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

摘要

固态 NMR 已成为结构生物学和化学领域的重要工具,能够解决膜结合和聚集状态下蛋白质的原子分辨率结构。最近在快速魔角旋转条件下实现了质子检测方法,为高效检测均匀标记的蛋白质提供了大的灵敏度增强。通过 NMR 确定蛋白质结构的第一个也是最具挑战性的步骤通常是特定于位置的共振分配。在这里,我们展示了基于高灵敏度质子检测的三维实验的共振分配,这些实验针对不同物理状态的样品,包括完全质子化的小蛋白(GB1,6 kDa)、氘代微晶蛋白(DsbA,21 kDa)、在脂质环境中制备的膜蛋白(DsbB,20 kDa)和纤维状蛋白(α-突触核蛋白,14 kDa)的扩展核心。在我们实施这些实验的过程中,包括 CONH、CO(CA)NH、CANH、CA(CO)NH、CBCANH 和 CBCA(CO)NH,我们选择了基于偶极子的极化转移方法,以实现相对较高的质子化水平(完全质子化或 100%酰胺质子)、快速魔角旋转条件(40 kHz)和中等质子去耦功率水平的最佳效率。每个 H-N 对仅与同一或不同残基的碳相关,而不是两者都相关,以最大化光谱分辨率。与碳检测相比,使用质子检测可以将实验时间至少缩短 10 倍。这些高灵敏度实验对于表达产量通常较低的膜蛋白尤为重要。基于质子检测的实验有望通过固态 NMR 提高灵敏度和分辨率,在加速蛋白质结构阐明方面发挥重要作用。

相似文献

6
Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.基于质子的超快魔角旋转固态核磁共振波谱学。
Acc Chem Res. 2017 Apr 18;50(4):1105-1113. doi: 10.1021/acs.accounts.7b00082. Epub 2017 Mar 29.
7
Solid-state NMR study of a 41 kDa membrane protein complex DsbA/DsbB.固态 NMR 研究 41 kDa 膜蛋白复合物 DsbA/DsbB。
J Phys Chem B. 2013 May 23;117(20):6052-60. doi: 10.1021/jp400795d. Epub 2013 May 9.

引用本文的文献

2
Dipolar Recoupling in Rotating Solids.旋转固体中的偶极重耦合
Chem Rev. 2024 Nov 27;124(22):12844-12917. doi: 10.1021/acs.chemrev.4c00373. Epub 2024 Nov 6.
4
Homonuclear Simplified Preservation of Equivalent Pathways Spectroscopy.同核简化等价途径光谱学保持。
J Phys Chem Lett. 2024 Jun 20;15(24):6272-6278. doi: 10.1021/acs.jpclett.4c00991. Epub 2024 Jun 10.
5
5D solid-state NMR spectroscopy for facilitated resonance assignment.5D 固态核磁共振波谱学促进共振分配。
J Biomol NMR. 2023 Dec;77(5-6):229-245. doi: 10.1007/s10858-023-00424-5. Epub 2023 Nov 9.
6
Heteronuclear and homonuclear radio-frequency-driven recoupling.异核和同核射频驱动的再耦合
Magn Reson (Gott). 2021 May 28;2(1):343-353. doi: 10.5194/mr-2-343-2021. eCollection 2021.
8
Great Offset Difference Internuclear Selective Transfer.巨大的核间选择转移的偏移差。
J Phys Chem Lett. 2023 Apr 27;14(16):3939-3945. doi: 10.1021/acs.jpclett.3c00194. Epub 2023 Apr 20.

本文引用的文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验