Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA.
Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
J Magn Reson. 2024 Aug;365:107724. doi: 10.1016/j.jmr.2024.107724. Epub 2024 Jun 23.
Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.
魔角旋转(MAS)固态核磁共振(SSNMR)光谱学是一种强大而通用的技术,可在原子分辨率下探测大的、不溶性生物系统中的结构和动态。随着仪器和极化方法的许多最新进展,SSNMR 中的技术发展仍然是一个活跃的研究领域,并为进一步提高低灵敏度和复杂三级和四级结构样品的数据收集、处理和分析提供了机会。SSNMR 光谱通常作为多维数据采集,需要稳定的实验条件来最小化信号波动(t 噪声)。在这项工作中,我们研究了影响信号稳定性的因素以及用于减轻这些因素的策略,同时考虑了实验室环境要求、放大器的配置和脉冲序列参数选择。我们表明,Thermopad®温度可变衰减器(TVA)可以部分补偿放大器输出功率随温度的变化,从而改善一些光谱仪和脉冲序列的一个重要不稳定源。我们还考虑了切线斜坡交叉极化(CP)波形形状的选择,以平衡灵敏度和仪器稳定性的要求。这些发现共同实现了在多个磁场强度下对微晶体、膜和纤维蛋白进行基于 CP 的多维光谱的稳定性和整体性能的提高。