Suppr超能文献

基于模糊支付的矩阵对策求解的有效方法。

An Effective Methodology for Solving Matrix Games With Fuzzy Payoffs.

出版信息

IEEE Trans Cybern. 2013 Apr;43(2):610-21. doi: 10.1109/TSMCB.2012.2212885. Epub 2013 Mar 7.

Abstract

Of the different types of games, the matrix games with fuzzy payoffs have been extensively discussed. Two major kinds of solution methods have been devised. One is the defuzzification approach based on ranking functions. Another is the two-level linear programming method which can obtain membership functions of players' fuzzy values (or gain floor and loss ceiling). These methods cannot always ensure that players' fuzzy/defuzzified values have a common value. The aim of this paper is to develop an effective methodology for solving matrix games with payoffs expressed by trapezoidal fuzzy numbers (TrFNs). In this methodology, we introduce the concept of Alpha-matrix games and prove that players' fuzzy values are always identical, and hereby, any matrix game with payoffs expressed by TrFNs has a fuzzy value, which is also a TrFN. The upper and lower bounds of any Alpha-cut of the fuzzy value and the players' optimal strategies are easily obtained through solving the derived four linear programming problems with the upper and lower bounds of Alpha-cuts of the fuzzy payoffs. In particular, the fuzzy value can be explicitly estimated through solving the auxiliary linear programming with data taken from the 1-cut and 0-cut of the fuzzy payoffs. The proposed method in this paper is illustrated with a real example and compared with other methods to show validity and applicability.

摘要

在不同类型的游戏中,模糊收益的矩阵游戏得到了广泛的讨论。已经设计出两种主要的解决方案方法。一种是基于排序函数的去模糊方法。另一种是两级线性规划方法,它可以获得玩家模糊值的隶属函数(或收益下限和损失上限)。这些方法并不总是能确保玩家的模糊/去模糊值具有共同的值。本文的目的是开发一种有效的方法来解决收益用梯形模糊数(TrFN)表示的矩阵游戏。在这种方法中,我们引入了 Alpha-矩阵游戏的概念,并证明了玩家的模糊值总是相同的,因此,任何收益用 TrFN 表示的矩阵游戏都有一个模糊值,它也是一个 TrFN。模糊值的任何 Alpha 切割的上下界以及玩家的最优策略都可以通过求解四个带有模糊收益的 Alpha 切割上下界的线性规划问题来轻松获得。特别是,通过求解辅助线性规划问题,可以根据模糊收益的 1 切割和 0 切割的数据来明确估计模糊值。本文提出的方法用一个实际例子来说明,并与其他方法进行了比较,以显示其有效性和适用性。

相似文献

1
An Effective Methodology for Solving Matrix Games With Fuzzy Payoffs.基于模糊支付的矩阵对策求解的有效方法。
IEEE Trans Cybern. 2013 Apr;43(2):610-21. doi: 10.1109/TSMCB.2012.2212885. Epub 2013 Mar 7.
6
N-player quantum games in an EPR setting.在 EPR 设置中的 N 人量子博弈。
PLoS One. 2012;7(5):e36404. doi: 10.1371/journal.pone.0036404. Epub 2012 May 11.
7
Fourier decomposition of payoff matrix for symmetric three-strategy games.对称三策略博弈收益矩阵的傅里叶分解
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042811. doi: 10.1103/PhysRevE.90.042811. Epub 2014 Oct 20.
9
Extortion under uncertainty: Zero-determinant strategies in noisy games.不确定情况下的敲诈勒索:嘈杂博弈中的零行列式策略
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052803. doi: 10.1103/PhysRevE.91.052803. Epub 2015 May 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验