Suppr超能文献

从序列库中推断 T 细胞受体的生成概率的统计推断。

Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

机构信息

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16161-6. doi: 10.1073/pnas.1212755109. Epub 2012 Sep 17.

Abstract

Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

摘要

体细胞胚系 V、D 和 J 基因的随机重排,为某些细胞表面受体创造了可变编码序列,这是免疫系统多样性的起源。这个过程被称为“VDJ 重组”,是通过一系列涉及基因选择和基因之间随机核苷酸插入和缺失的随机分子事件来实现的。我们使用人类 CD4+ T 细胞受体β链可变 CDR3 区的大量序列库,来推断这些基本生化事件的统计特性。由于任何给定的 CDR3 序列都可以以多种方式产生,因此隐藏的重组事件的概率分布不能直接从观察到的序列中推断出来;因此,我们开发了一种最大似然推断方法来实现这一目标。为了将分子重排机制的特性与选择的影响分开,我们专注于 T 细胞 DNA 中无功能的 CDR3 序列。我们推断了当一个新的 T 细胞受体基因产生时,各种生成事件的联合分布。我们发现了一个丰富的相关性(和不存在)图景,深入了解了所涉及的分子机制。个体之间的生成事件统计数据是一致的,这表明存在一种普遍的生化过程。我们的概率模型通过原始重组过程预测任何特定 CDR3 序列的生成概率,从而使我们能够量化 T 细胞库的潜在多样性,并理解为什么某些序列在个体之间共享。我们认为,使用本文中提出的形式统计推断方法对于定量理解适应性免疫系统中多样性的产生和进化将是至关重要的。

相似文献

2
Inferring processes underlying B-cell repertoire diversity.推断B细胞受体库多样性背后的机制。
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676). doi: 10.1098/rstb.2014.0243.
3
Insights into immune system development and function from mouse T-cell repertoires.从鼠 T 细胞库中洞察免疫系统的发育和功能。
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2253-2258. doi: 10.1073/pnas.1700241114. Epub 2017 Feb 14.
6
Quantifying selection in immune receptor repertoires.量化免疫受体库中的选择。
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9875-80. doi: 10.1073/pnas.1409572111. Epub 2014 Jun 18.
10
Assigning and visualizing germline genes in antibody repertoires.在抗体库中分配和可视化种系基因。
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676). doi: 10.1098/rstb.2014.0240.

引用本文的文献

5
Learning predictive signatures of HLA type from T-cell repertoires.从T细胞库中学习HLA类型的预测特征。
PLoS Comput Biol. 2025 Jan 6;21(1):e1012724. doi: 10.1371/journal.pcbi.1012724. eCollection 2025 Jan.

本文引用的文献

1
V(D)J recombination: mechanisms of initiation.V(D)J 重组:起始机制。
Annu Rev Genet. 2011;45:167-202. doi: 10.1146/annurev-genet-110410-132552. Epub 2011 Aug 19.
4
Convergent recombination shapes the clonotypic landscape of the naive T-cell repertoire.汇聚重组塑造了幼稚 T 细胞库的克隆型景观。
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19414-9. doi: 10.1073/pnas.1010586107. Epub 2010 Oct 25.
6
SnapShot: Nonhomologous DNA end joining (NHEJ).简要概述:非同源DNA末端连接(NHEJ)。
Cell. 2010 Aug 6;142(3):496-496.e1. doi: 10.1016/j.cell.2010.07.035.
7
Maximum entropy models for antibody diversity.最大熵模型在抗体多样性中的应用。
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10. doi: 10.1073/pnas.1001705107. Epub 2010 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验