Suppr超能文献

丁香假单胞菌卷曲螺旋效应物 AvrRps4 的不同区域对于激活免疫反应是必需的。

Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity.

机构信息

The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16371-6. doi: 10.1073/pnas.1212332109. Epub 2012 Sep 17.

Abstract

Gram-negative phytopathogenic bacteria translocate effector proteins into plant cells to subvert host defenses. These effectors can be recognized by plant nucleotide-binding-leucine-rich repeat immune receptors, triggering defense responses that restrict pathogen growth. AvrRps4, an effector protein from Pseudomonas syringae pv. pisi, triggers RPS4-dependent immunity in resistant accessions of Arabidopsis. To better understand the molecular basis of AvrRps4-triggered immunity, we determined the crystal structure of processed AvrRps4 (AvrRps4(C), residues 134-221), revealing that it forms an antiparallel α-helical coiled coil. Structure-informed mutagenesis reveals an electronegative surface patch in AvrRps4(C) required for recognition by RPS4; mutations in this region can also uncouple triggering of the hypersensitive response from disease resistance. This uncoupling may result from a lower level of defense activation, sufficient for avirulence but not for triggering a hypersensitive response. Natural variation in AvrRps4 reveals distinct recognition specificities that involve a surface-exposed residue. Recently, a direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 has been implicated in activation of immunity. However, we were unable to detect direct interaction between AvrRps4 and Enhanced Disease Susceptibility 1 after coexpression in Nicotiana benthamiana or in yeast cells. How intracellular plant immune receptors activate defense upon effector perception remains an unsolved problem. The structure of AvrRps4(C), and identification of functionally important residues for its activation of plant immunity, advances our understanding of these processes in a well-defined model pathosystem.

摘要

革兰氏阴性植物病原细菌将效应蛋白易位到植物细胞中,以颠覆宿主防御。这些效应子可以被植物核苷酸结合亮氨酸重复免疫受体识别,触发限制病原体生长的防御反应。豌豆细菌性叶斑病菌的效应蛋白 AvrRps4 在拟南芥抗性品系中触发 RPS4 依赖性免疫。为了更好地理解 AvrRps4 触发免疫的分子基础,我们确定了加工后的 AvrRps4(AvrRps4(C),残基 134-221)的晶体结构,揭示它形成了一个反平行的α-螺旋卷曲螺旋。结构信息指导的突变分析揭示了 AvrRps4(C)中需要被 RPS4 识别的带负电荷的表面斑块;该区域的突变也可以将触发过敏反应与抗病性脱偶联。这种解偶联可能是由于防御激活水平降低,足以产生无毒但不足以触发过敏反应。AvrRps4 的自然变异揭示了涉及表面暴露残基的不同识别特异性。最近,AvrRps4 与增强的疾病易感性 1 之间的直接相互作用被牵连到免疫的激活中。然而,我们无法在烟草原生质体或酵母细胞中共表达后检测到 AvrRps4 和增强的疾病易感性 1 之间的直接相互作用。在效应子感知后,细胞内植物免疫受体如何激活防御仍然是一个未解决的问题。AvrRps4(C)的结构以及鉴定其激活植物免疫的功能重要残基,推进了我们对这些过程在明确的模式病理系统中的理解。

相似文献

1
Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16371-6. doi: 10.1073/pnas.1212332109. Epub 2012 Sep 17.
2
Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2113996118.
3
The Pseudomonas syringae effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function.
Plant J. 2009 Mar;57(6):1079-91. doi: 10.1111/j.1365-313X.2008.03751.x. Epub 2009 Jan 17.
5
The processed C-terminus of AvrRps4 effector suppresses plant immunity via targeting multiple WRKYs.
J Integr Plant Biol. 2024 Aug;66(8):1769-1787. doi: 10.1111/jipb.13710. Epub 2024 Jun 13.
6
The bacterial type III-secreted protein AvrRps4 is a bipartite effector.
PLoS Pathog. 2018 Mar 30;14(3):e1006984. doi: 10.1371/journal.ppat.1006984. eCollection 2018 Mar.
8
9
Distinct modes of derepression of an immune receptor complex by two different bacterial effectors.
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10218-10227. doi: 10.1073/pnas.1811858115. Epub 2018 Sep 25.

引用本文的文献

1
Greater than the sum of their parts: an overview of the AvrRps4 effector family.
Front Plant Sci. 2024 May 10;15:1400659. doi: 10.3389/fpls.2024.1400659. eCollection 2024.
2
Bacterial host adaptation through sequence and structural variations of a single type III effector gene.
iScience. 2024 Feb 15;27(3):109224. doi: 10.1016/j.isci.2024.109224. eCollection 2024 Mar 15.
3
Unmasking the invaders: NLR-mal function in plant defense.
Front Plant Sci. 2023 Nov 20;14:1307294. doi: 10.3389/fpls.2023.1307294. eCollection 2023.
4
Global translational induction during NLR-mediated immunity in plants is dynamically regulated by CDC123, an ATP-sensitive protein.
Cell Host Microbe. 2023 Mar 8;31(3):334-342.e5. doi: 10.1016/j.chom.2023.01.014. Epub 2023 Feb 17.
5
Genetic requirements for infection-specific responses in conferring disease resistance in .
Front Plant Sci. 2022 Nov 29;13:1068438. doi: 10.3389/fpls.2022.1068438. eCollection 2022.
6
Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance.
Front Microbiol. 2022 Sep 28;13:1018504. doi: 10.3389/fmicb.2022.1018504. eCollection 2022.
7
AvrRps4 effector family processing and recognition in lettuce.
Mol Plant Pathol. 2022 Sep;23(9):1390-1398. doi: 10.1111/mpp.13233. Epub 2022 May 26.
8
Two Liberibacter Proteins Combine to Suppress Critical Innate Immune Defenses in Citrus.
Front Plant Sci. 2022 May 2;13:869178. doi: 10.3389/fpls.2022.869178. eCollection 2022.
10
Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2113996118.

本文引用的文献

1
Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III Effector.
Cell Host Microbe. 2011 Dec 15;10(6):616-26. doi: 10.1016/j.chom.2011.10.013. Epub 2011 Dec 8.
2
Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.
Science. 2011 Dec 9;334(6061):1405-8. doi: 10.1126/science.1211592.
3
4
Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.
J Biol Chem. 2011 Oct 14;286(41):35834-35842. doi: 10.1074/jbc.M111.262303. Epub 2011 Aug 3.
5
Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates.
PLoS Pathog. 2011 Jul;7(7):e1002132. doi: 10.1371/journal.ppat.1002132. Epub 2011 Jul 14.
6
Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13323-8. doi: 10.1073/pnas.1109791108. Epub 2011 Jul 25.
8
Arabidopsis type I metacaspases control cell death.
Science. 2010 Dec 3;330(6009):1393-7. doi: 10.1126/science.1194980. Epub 2010 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验