Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
Bioengineered. 2013 Mar-Apr;4(2):90-4. doi: 10.4161/bioe.22262. Epub 2012 Mar 1.
Engineered zinc-finger nucleases (ZFNs) are powerful tools for creating double-stranded-breaks (DSBs) in genomic DNA in a site-specific manner. These DSBs generated by ZFNs can be repaired by homology-directed repair or nonhomologous end joining, in which the latter can be exploited to generate insertion or deletion mutants. Based on published literature, we designed a pair of zinc-finger nucleases and inactivated the GDP-fucose transporter gene (Slc35c1) in a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter gene (Slc35a1). The resulting mutant cell line, CHO-gmt5, lacks functional GDP-fucose transporter and CMP-sialic acid transporter. As a result, these cells can only produce asialylated and afucosylated glycoproteins. It is now widely recognized that removal of the core fucose from the N-glycans attached to Asn(297) of human IgG1 significantly enhances its binding to its receptor, FcγRIIIa, and thereby dramatically improves antibody-dependent cellular cytotoxicity (ADCC). Recent reports showed that removal of sialic acid from IgG1 also enhances ADCC. Therefore, CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC. These cells show comparable growth rate to wild type CHO-K1 cells and uncompromised transfection efficiency, which make them desirable for use as a production line.
基因工程锌指核酸酶(ZFNs)是一种在基因组 DNA 中特异性产生双链断裂(DSBs)的强大工具。这些由 ZFNs 产生的 DSBs 可以通过同源定向修复或非同源末端连接进行修复,其中后者可用于产生插入或缺失突变体。基于已发表的文献,我们设计了一对锌指核酸酶,并在先前报道的 CHO 突变体中失活 GDP-岩藻糖转运基因(Slc35c1),该突变体的 CMP-唾液酸转运基因(Slc35a1)功能失调。由此产生的突变细胞系 CHO-gmt5 缺乏功能性 GDP-岩藻糖转运蛋白和 CMP-唾液酸转运蛋白。因此,这些细胞只能产生无唾液酸和去岩藻糖基化的糖蛋白。现在人们普遍认识到,从附着在人 IgG1 的 Asn(297)上的 N-聚糖中去除核心岩藻糖显著增强了其与受体 FcγRIIIa 的结合,从而极大地提高了抗体依赖性细胞毒性(ADCC)。最近的报告表明,从 IgG1 中去除唾液酸也能增强 ADCC。因此,CHO-gmt5 可能代表一种更有利的细胞系,可用于生产增强 ADCC 的重组抗体。这些细胞表现出与野生型 CHO-K1 细胞相当的生长速度和未受损的转染效率,这使它们成为生产线上的理想选择。