van der Veen Marleen H, Cirillo Marco, Lambert Karel, Flamée Stijn, Bodnarchuk Maryna I, Heiss Wolfgang, De Gendt Stefan, Hens Zeger, Vereecken Philippe M
imec, Kapeldreef 75, B-3001 Leuven, Belgium.
Nanotechnology. 2012 Oct 12;23(40):405604. doi: 10.1088/0957-4484/23/40/405604. Epub 2012 Sep 18.
We investigate colloidal Fe(3)O(4) nanocrystals as a catalyst system for carbon nanotube (CNT) growth that allows for decoupling the CNT growth step from the catalyst shaping and activation step. The system consists of 6.4 nm Fe(3)O(4) nanocrystals synthesized using a solution-based thermal decomposition reaction and, subsequently, transferred as hexagonally ordered Langmuir-Blodgett (LB) monolayers on TiN substrates. We demonstrate for the first time aligned CNT growth from LB deposited nanocrystals on a metallic underlayer. The hexagonally ordered monolayers of catalyst particles show promising stability up to the CNT growth temperature. In situ TEM heating experiments were performed to find this onset of particle deformation and showed stability of the nanoparticles up to 600 °C. The particle coalescence at high temperatures was also evidenced by the increasing CNT diameter, from 9.5 nm at 580 °C to 16 nm at 630 °C. By choosing to work at temperatures below the onset particle coalescence temperature, equivalent CNT diameters were obtained under different catalyst activation and growth conditions. The high stability of the catalyst on the metallic underlayer enables us to study CNT growth kinetics independently of the catalyst shaping step. This work opens a route towards combining growth studies with an electrical evaluation of the CNT growth as the TiN can be used as the bottom contact.
我们研究了胶体Fe(3)O(4)纳米晶体作为碳纳米管(CNT)生长的催化剂体系,该体系可使CNT生长步骤与催化剂成型和活化步骤解耦。该体系由通过溶液热分解反应合成的6.4 nm Fe(3)O(4)纳米晶体组成,随后以六方有序的朗缪尔-布洛杰特(LB)单层形式转移到TiN衬底上。我们首次展示了在金属底层上由LB沉积的纳米晶体实现的对齐CNT生长。催化剂颗粒的六方有序单层在高达CNT生长温度时显示出良好的稳定性。进行了原位TEM加热实验以确定颗粒变形的起始温度,并表明纳米颗粒在高达600°C时具有稳定性。高温下颗粒的聚结也通过CNT直径的增加得到证明,从580°C时的9.5 nm增加到630°C时的16 nm。通过选择在颗粒聚结起始温度以下的温度下工作,在不同的催化剂活化和生长条件下获得了等效的CNT直径。金属底层上催化剂的高稳定性使我们能够独立于催化剂成型步骤研究CNT生长动力学。这项工作开辟了一条将生长研究与CNT生长的电学评估相结合的途径,因为TiN可用作底部接触。