Suppr超能文献

高盐诱导核蛋白丰度变化的蛋白质组学分析。

Proteomic analysis of high NaCl-induced changes in abundance of nuclear proteins.

机构信息

Systems Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.

出版信息

Physiol Genomics. 2012 Nov 1;44(21):1063-71. doi: 10.1152/physiolgenomics.00068.2012. Epub 2012 Sep 18.

Abstract

Mammalian cells are normally stressed by high interstitial NaCl in the renal medulla and by lesser elevation of NaCl in several other tissues. High NaCl damages proteins and DNA and can kill cells. Known protective responses include nuclear translocation of the transcription factor NFAT5 and other proteins. In order better to understand the extent and significance of changes in nuclear protein abundance, we extracted nuclear and cytoplasmic proteins separately from HEK293 cells and measured by LC-MS/MS (iTRAQ) changes of abundance of proteins in the extracts in response to high NaCl at three time points: 1 h, 8 h, and adapted for two passages. We confidently identified a total of 3,190 proteins; 163 proteins changed significantly at least at one time point in the nucleus. We discerned the biological significance of the changes by Gene Ontology and protein network analysis. Proteins that change in the nucleus include ones involved in protein folding and localization, microtubule-based process, regulation of cell death, cytoskeleton organization, DNA metabolic process, RNA processing, and cell cycle. Among striking changes in the nucleus, we found a decrease of all six 14-3-3 isoforms; dynamic changes of "cytoskeletal" proteins, suggestive of nucleoskeletal reorganization; rapid decrease of tubulins; and dynamic changes of heat shock proteins. Identification of these changes of nuclear protein abundance enhances our understanding of high NaCl-induced cellular stress, and provides leads to previously unknown damages and protective responses.

摘要

哺乳动物细胞通常会受到肾髓质中高间质 NaCl 和其他几种组织中稍高 NaCl 水平的压力。高 NaCl 会破坏蛋白质和 DNA,并导致细胞死亡。已知的保护反应包括转录因子 NFAT5 和其他蛋白质的核易位。为了更好地了解核蛋白丰度变化的程度和意义,我们分别从 HEK293 细胞中提取核蛋白和胞质蛋白,并通过 LC-MS/MS(iTRAQ)测量高 NaCl 处理后三个时间点(1 h、8 h 和适应两个传代)提取物中蛋白质丰度的变化。我们自信地鉴定了总共 3190 种蛋白质;在核内至少有 163 种蛋白质在至少一个时间点发生了显著变化。我们通过基因本体论和蛋白质网络分析来辨别这些变化的生物学意义。在核内发生变化的蛋白质包括参与蛋白质折叠和定位、微管为基础的过程、细胞死亡调节、细胞骨架组织、DNA 代谢过程、RNA 加工和细胞周期的蛋白质。在核内发生的显著变化中,我们发现所有六种 14-3-3 同工型都减少了;“细胞骨架”蛋白的动态变化,提示核骨架重组;微管蛋白的快速减少;以及热休克蛋白的动态变化。核蛋白丰度变化的鉴定增强了我们对高 NaCl 诱导的细胞应激的理解,并为以前未知的损伤和保护反应提供了线索。

相似文献

1
Proteomic analysis of high NaCl-induced changes in abundance of nuclear proteins.
Physiol Genomics. 2012 Nov 1;44(21):1063-71. doi: 10.1152/physiolgenomics.00068.2012. Epub 2012 Sep 18.
2
Mutations that reduce its specific DNA binding inhibit high NaCl-induced nuclear localization of the osmoprotective transcription factor NFAT5.
Am J Physiol Cell Physiol. 2012 Nov 15;303(10):C1061-9. doi: 10.1152/ajpcell.00265.2012. Epub 2012 Sep 19.
5
Ataxia telangiectasia-mutated, a DNA damage-inducible kinase, contributes to high NaCl-induced nuclear localization of transcription factor TonEBP/OREBP.
Am J Physiol Renal Physiol. 2005 Sep;289(3):F506-11. doi: 10.1152/ajprenal.00417.2004. Epub 2005 Apr 19.
7
PKC-α contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2.
Am J Physiol Renal Physiol. 2015 Jan 15;308(2):F140-8. doi: 10.1152/ajprenal.00471.2014. Epub 2014 Nov 12.
8
Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5.
Physiol Genomics. 2016 Apr;48(4):290-305. doi: 10.1152/physiolgenomics.00110.2015. Epub 2016 Jan 12.
9
Global discovery of high-NaCl-induced changes of protein phosphorylation.
Am J Physiol Cell Physiol. 2014 Sep 1;307(5):C442-54. doi: 10.1152/ajpcell.00379.2013. Epub 2014 Jun 25.
10
Differential nuclear proteomes in response to N-methyl-N'-nitro-N-nitrosoguanidine exposure.
J Proteome Res. 2009 Jun;8(6):2863-72. doi: 10.1021/pr900008n.

引用本文的文献

1
Genomic insights into the seawater adaptation in Cyprinidae.
BMC Biol. 2024 Apr 19;22(1):87. doi: 10.1186/s12915-024-01885-2.
2
Salivary ZG16B expression loss follows exocrine gland dysfunction related to oral chronic graft-versus-host disease.
iScience. 2021 Dec 9;25(1):103592. doi: 10.1016/j.isci.2021.103592. eCollection 2022 Jan 21.
5
Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis.
RNA. 2015 Aug;21(8):1419-32. doi: 10.1261/rna.047647.114. Epub 2015 Jun 18.
6
Database of osmoregulated proteins in mammalian cells.
Physiol Rep. 2014 Oct 28;2(10):e12180. doi: 10.14814/phy2.12180.
7
Global discovery of high-NaCl-induced changes of protein phosphorylation.
Am J Physiol Cell Physiol. 2014 Sep 1;307(5):C442-54. doi: 10.1152/ajpcell.00379.2013. Epub 2014 Jun 25.

本文引用的文献

1
2
Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor.
Oncogene. 2012 Oct 18;31(42):4536-49. doi: 10.1038/onc.2011.618. Epub 2012 Jan 23.
3
DNA double-strand breaks induced by high NaCl occur predominantly in gene deserts.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20796-801. doi: 10.1073/pnas.1114677108. Epub 2011 Nov 21.
4
MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics.
Nat Methods. 2011 Oct 2;8(11):937-40. doi: 10.1038/nmeth.1714.
5
Rac1/osmosensing scaffold for MEKK3 contributes via phospholipase C-gamma1 to activation of the osmoprotective transcription factor NFAT5.
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12155-60. doi: 10.1073/pnas.1108107108. Epub 2011 Jun 28.
6
Hypertonic stress induces rapid and widespread protein damage in C. elegans.
Am J Physiol Cell Physiol. 2011 Sep;301(3):C566-76. doi: 10.1152/ajpcell.00030.2011. Epub 2011 May 25.
7
Cell volume homeostatic mechanisms: effectors and signalling pathways.
Acta Physiol (Oxf). 2011 Jul;202(3):465-85. doi: 10.1111/j.1748-1716.2010.02190.x. Epub 2010 Nov 9.
8
Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-kappaB activity.
Mol Biol Cell. 2010 Oct 1;21(19):3459-74. doi: 10.1091/mbc.E10-02-0133. Epub 2010 Aug 4.
9
A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
Mol Cell Proteomics. 2010 Mar;9(3):457-70. doi: 10.1074/mcp.M900429-MCP200. Epub 2009 Dec 21.
10
Nucleocytoplasmic shuttling of soluble tubulin in mammalian cells.
J Cell Sci. 2009 Apr 15;122(Pt 8):1111-8. doi: 10.1242/jcs.043034. Epub 2009 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验