Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland;
Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland; and.
Am J Physiol Renal Physiol. 2015 Jan 15;308(2):F140-8. doi: 10.1152/ajprenal.00471.2014. Epub 2014 Nov 12.
High NaCl in the renal medullary interstitial fluid powers the concentration of urine but can damage cells. The transcription factor nuclear factor of activated T cells 5 (NFAT5) activates the expression of osmoprotective genes. We studied whether PKC-α contributes to the activation of NFAT5. PKC-α protein abundance was greater in the renal medulla than in the cortex. Knockout of PKC-α reduced NFAT5 protein abundance and expression of its target genes in the inner medulla. In human embryonic kidney (HEK)-293 cells, high NaCl increased PKC-α activity, and small interfering RNA-mediated knockdown of PKC-α attenuated high NaCl-induced NFAT5 transcriptional activity. Expression of ERK1/2 protein and phosphorylation of ERK1/2 were higher in the renal inner medulla than in the cortex. Knockout of PKC-α decreased ERK1/2 phosphorylation in the inner medulla, as did knockdown of PKC-α in HEK-293 cells. Also, knockdown of ERK2 reduced high NaCl-dependent NFAT5 transcriptional activity in HEK-293 cells. Combined knockdown of PKC-α and ERK2 had no greater effect than knockdown of either alone. Knockdown of either PKC-α or ERK2 reduced the high NaCl-induced increase of NFAT5 transactivating activity. We have previously found that the high NaCl-induced increase of phosphorylation of Ser(591) on Src homology 2 domain-containing phosphatase 1 (SHP-1-S591-P) contributes to the activation of NFAT5 in cell culture, and here we found high levels of SHP-1-S591-P in the inner medulla. PKC-α has been previously shown to increase SHP-1-S591-P, which raised the possibility that PKC-α might be acting through SHP-1. However, we did not find that knockout of PKC-α in the renal medulla or knockdown in HEK-293 cells affected SHP-1-S591-P. We conclude that PKC-α contributes to high NaCl-dependent activation of NFAT5 through ERK1/2 but not through SHP-1-S591.
高浓度的肾髓质间质液中的 NaCl 有助于尿液浓缩,但也会损害细胞。转录因子激活 T 细胞核因子 5(NFAT5)可激活渗透调节基因的表达。本研究旨在探讨蛋白激酶 C-α(PKC-α)是否有助于 NFAT5 的激活。PKC-α 蛋白在肾髓质中的含量高于皮质。PKC-α 基因敲除降低了内髓质中 NFAT5 蛋白的含量及其靶基因的表达。在人胚肾(HEK)-293 细胞中,高浓度 NaCl 可增加 PKC-α 的活性,而 PKC-α 的小干扰 RNA 敲低则可减弱高浓度 NaCl 诱导的 NFAT5 转录活性。与皮质相比,肾内髓质 ERK1/2 蛋白的表达和磷酸化水平更高。PKC-α 基因敲除降低了内髓质 ERK1/2 的磷酸化,HEK-293 细胞中 PKC-α 的敲低也降低了 ERK1/2 的磷酸化。此外,ERK2 的敲低也降低了 HEK-293 细胞中高浓度 NaCl 依赖性 NFAT5 转录活性。与单独敲低 PKC-α 或 ERK2 相比,联合敲低 PKC-α 和 ERK2 并无更大的作用。单独或联合敲低 PKC-α 或 ERK2 均可降低高浓度 NaCl 诱导的 NFAT5 反式激活活性的增加。我们之前发现,Src 同源 2 结构域含磷酸酶 1(SHP-1-S591-P)的高浓度 NaCl 诱导的磷酸化增加有助于细胞培养中 NFAT5 的激活,而在这里我们在内髓质中发现了高水平的 SHP-1-S591-P。PKC-α 先前已被证明可增加 SHP-1-S591-P,这增加了 PKC-α 可能通过 SHP-1 发挥作用的可能性。然而,我们没有发现肾髓质中 PKC-α 的基因敲除或 HEK-293 细胞中的敲低影响 SHP-1-S591-P。综上,我们得出结论,PKC-α 通过 ERK1/2 而不是 SHP-1-S591 促进高浓度 NaCl 依赖性 NFAT5 的激活。