Suppr超能文献

体内果蝇遗传模型用于草酸钙肾结石。

In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis.

机构信息

Dept. Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.

出版信息

Am J Physiol Renal Physiol. 2012 Dec 1;303(11):F1555-62. doi: 10.1152/ajprenal.00074.2012. Epub 2012 Sep 19.

Abstract

Nephrolithiasis is a major public health problem with a complex and varied etiology. Most stones are composed of calcium oxalate (CaOx), with dietary excess a risk factor. Because of complexity of mammalian system, the details of stone formation remain to be understood. Here we have developed a nephrolithiasis model using the genetic model Drosophila melanogaster, which has a simple, transparent kidney tubule. Drosophilia reliably develops CaOx stones upon dietary oxalate supplementation, and the nucleation and growth of microliths can be viewed in real time. The Slc26 anion transporter dPrestin (Slc26a5/6) is strongly expressed in Drosophilia kidney, and biophysical analysis shows that it is a potent oxalate transporter. When dPrestin is knocked down by RNAi in fly kidney, formation of microliths is reduced, identifying dPrestin as a key player in oxalate excretion. CaOx stone formation is an ancient conserved process across >400 My of divergent evolution (fly and human), and from this study we can conclude that the fly is a good genetic model of nephrolithiasis.

摘要

肾结石是一个具有复杂且多样病因的主要公共卫生问题。大多数结石由草酸钙(CaOx)组成,饮食过量是一个风险因素。由于哺乳动物系统的复杂性,结石形成的细节仍有待了解。在这里,我们使用遗传模型果蝇(Drosophila melanogaster)开发了肾结石模型,其具有简单、透明的肾小管。在饮食中补充草酸盐后,果蝇可靠地形成 CaOx 结石,并且可以实时观察微结石的成核和生长。Slc26 阴离子转运体 dPrestin(Slc26a5/6)在果蝇肾脏中强烈表达,生物物理分析表明它是一种有效的草酸盐转运体。当 dPrestin 在果蝇肾脏中通过 RNAi 敲低时,微结石的形成减少,表明 dPrestin 是草酸排泄的关键因素。CaOx 结石形成是一个跨越超过 4 亿年进化分歧(果蝇和人类)的古老保守过程,从这项研究中我们可以得出结论,果蝇是肾结石的良好遗传模型。

相似文献

1
In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis.
Am J Physiol Renal Physiol. 2012 Dec 1;303(11):F1555-62. doi: 10.1152/ajprenal.00074.2012. Epub 2012 Sep 19.
2
Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis.
Am J Physiol Renal Physiol. 2016 Jan 15;310(2):F152-9. doi: 10.1152/ajprenal.00406.2015. Epub 2015 Nov 4.
4
Oxalate-Degrading Bacillus subtilis Mitigates Urolithiasis in a Drosophila melanogaster Model.
mSphere. 2020 Sep 9;5(5):e00498-20. doi: 10.1128/mSphere.00498-20.
7
Autophagy-endoplasmic reticulum stress inhibition mechanism of superoxide dismutase in the formation of calcium oxalate kidney stones.
Biomed Pharmacother. 2020 Jan;121:109649. doi: 10.1016/j.biopha.2019.109649. Epub 2019 Nov 13.
8
Identification and validation of the biomarkers related to ferroptosis in calcium oxalate nephrolithiasis.
Aging (Albany NY). 2024 Mar 25;16(7):5987-6007. doi: 10.18632/aging.205684.
9
Clinical-grade Garcinia cambogia extract dissolves calcium oxalate crystals in Drosophila kidney stone models.
Eur Rev Med Pharmacol Sci. 2020 Jun;24(11):6434-6445. doi: 10.26355/eurrev_202006_21542.

引用本文的文献

4
SLC26 family: a new insight for kidney stone disease.
Front Physiol. 2023 May 25;14:1118342. doi: 10.3389/fphys.2023.1118342. eCollection 2023.
5
Extract Prevents Calcium Oxalate Crystallization and Extends Lifespan in a Urolithiasis Model.
Life (Basel). 2022 Aug 16;12(8):1250. doi: 10.3390/life12081250.
6
Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing.
Proc Natl Acad Sci U S A. 2022 Jun 21;119(25):e2203179119. doi: 10.1073/pnas.2203179119. Epub 2022 Jun 13.
7
Drosophila melanogaster: a simple genetic model of kidney structure, function and disease.
Nat Rev Nephrol. 2022 Jul;18(7):417-434. doi: 10.1038/s41581-022-00561-4. Epub 2022 Apr 11.
8
The fruit fly kidney stone models and their application in drug development.
Heliyon. 2022 Apr 1;8(4):e09232. doi: 10.1016/j.heliyon.2022.e09232. eCollection 2022 Apr.
10
Transporters and tubule crystals in the insect Malpighian tubule.
Curr Opin Insect Sci. 2021 Oct;47:82-89. doi: 10.1016/j.cois.2021.05.003. Epub 2021 May 24.

本文引用的文献

1
Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion.
J Am Soc Nephrol. 2011 Dec;22(12):2247-55. doi: 10.1681/ASN.2011040433. Epub 2011 Oct 21.
3
Evidence for net renal tubule oxalate secretion in patients with calcium kidney stones.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F311-8. doi: 10.1152/ajprenal.00411.2010. Epub 2010 Dec 1.
4
Cell-specific inositol 1,4,5 trisphosphate 3-kinase mediates epithelial cell apoptosis in response to oxidative stress in Drosophila.
Cell Signal. 2010 May;22(5):737-48. doi: 10.1016/j.cellsig.2009.12.009. Epub 2010 Jan 11.
5
Recent advances in the pathophysiology of nephrolithiasis.
Kidney Int. 2009 Mar;75(6):585-95. doi: 10.1038/ki.2008.626. Epub 2008 Dec 10.
6
Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress.
Physiol Genomics. 2009 Mar 3;37(1):1-11. doi: 10.1152/physiolgenomics.90360.2008. Epub 2008 Nov 18.
7
Deletion of the chloride transporter Slc26a9 causes loss of tubulovesicles in parietal cells and impairs acid secretion in the stomach.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17955-60. doi: 10.1073/pnas.0800616105. Epub 2008 Nov 12.
8
Phenotypic and functional analysis of human SLC26A6 variants in patients with familial hyperoxaluria and calcium oxalate nephrolithiasis.
Am J Kidney Dis. 2008 Dec;52(6):1096-103. doi: 10.1053/j.ajkd.2008.07.041. Epub 2008 Oct 31.
9
Oxalate in renal stone disease: the terminal metabolite that just won't go away.
Nat Clin Pract Nephrol. 2008 Jul;4(7):368-77. doi: 10.1038/ncpneph0845. Epub 2008 Jun 3.
10
Fructose-induced hypertension: essential role of chloride and fructose absorbing transporters PAT1 and Glut5.
Kidney Int. 2008 Aug;74(4):438-47. doi: 10.1038/ki.2008.184. Epub 2008 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验