Suppr超能文献

人皮质骨在压缩下的后续屈服行为的渐进性的取向依赖性。

Orientation dependence of progressive post-yield behavior of human cortical bone in compression.

机构信息

Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX, USA.

出版信息

J Biomech. 2012 Nov 15;45(16):2829-34. doi: 10.1016/j.jbiomech.2012.08.034. Epub 2012 Sep 17.

Abstract

Identifying the underlying mechanisms of energy dissipation during post-yield deformation of bone is critical in understanding bone fragility fractures. However, the orientation-dependence of post-yield properties of bone is still poorly understood. Thus, the objective of this study was to determine the effect of loading direction on the evolution of post-yield behavior of bone using a progressive loading protocol. To do so, cylindrical compressive bone samples were prepared each in the longitudinal, circumferential and radial directions, from the mid-shaft of cadaveric femurs procured from eight middle-aged male donors (51.5 ± 3.3 years old). These specimens were tested in compression in a progressive loading scheme. The results exhibited that the elastic modulus, yield stress, and energy dissipation were significantly greater in the longitudinal direction than in the transverse (circumferential and radial) directions. However, no significant differences were observed in the yield strain as well as in the successive plastic strain with respect to the increasing applied strain among the three orientations. These results suggest that the initiation and progression of plastic strain are independent of loading orientations, thus implying that the underlying mechanism of plastic behavior of bone in compression is similar in all the orientations.

摘要

确定骨骼在屈服后变形过程中能量耗散的潜在机制对于理解骨质疏松性骨折至关重要。然而,骨骼屈服后性能的各向异性仍然知之甚少。因此,本研究的目的是使用渐进加载方案确定加载方向对骨骼屈服后行为演变的影响。为此,从 8 名中年男性供体(51.5±3.3 岁)的股骨干中段制备了圆柱形压缩骨样本,每个样本分别取自纵向、周向和径向。这些样本在渐进加载方案下进行压缩测试。结果表明,弹性模量、屈服应力和能量耗散在纵向方向上明显大于横向(周向和径向)方向。然而,在三个方向上,随着施加应变的增加,屈服应变以及随后的塑性应变都没有明显差异。这些结果表明,塑性应变的起始和发展与加载方向无关,因此意味着在所有方向上,骨骼在压缩下的塑性行为的潜在机制是相似的。

相似文献

1
Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
J Biomech. 2012 Nov 15;45(16):2829-34. doi: 10.1016/j.jbiomech.2012.08.034. Epub 2012 Sep 17.
2
Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones.
J Mech Behav Biomed Mater. 2024 Mar;151:106387. doi: 10.1016/j.jmbbm.2024.106387. Epub 2024 Jan 14.
3
Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.
J Biomech. 2011 Feb 24;44(4):676-82. doi: 10.1016/j.jbiomech.2010.11.003. Epub 2010 Nov 26.
4
Initial anisotropy in demineralized bovine cortical bone in compressive cyclic loading-unloading.
Mater Sci Eng C Mater Biol Appl. 2013 Mar 1;33(2):817-23. doi: 10.1016/j.msec.2012.11.006. Epub 2012 Nov 12.
5
A novel approach to assess post-yield energy dissipation of bone in tension.
J Biomech. 2007;40(3):674-7. doi: 10.1016/j.jbiomech.2006.02.002.
6
Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
J Biomech. 2009 Mar 11;42(4):491-7. doi: 10.1016/j.jbiomech.2008.11.016. Epub 2009 Jan 17.
7
Progressive post-yield behavior of human cortical bone in shear.
Bone. 2013 Mar;53(1):1-5. doi: 10.1016/j.bone.2012.11.029. Epub 2012 Dec 4.
8
Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
J Mech Behav Biomed Mater. 2009 Dec;2(6):613-9. doi: 10.1016/j.jmbbm.2008.11.008. Epub 2008 Dec 13.
10
Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone.
Bone. 2013 Aug;55(2):288-91. doi: 10.1016/j.bone.2013.04.006. Epub 2013 Apr 16.

引用本文的文献

3
Design and In Vitro Validation of an Orthopaedic Drill Guide for Femoral Stem Revision in Total Hip Arthroplasty.
IEEE J Transl Eng Health Med. 2024 Feb 12;12:340-347. doi: 10.1109/JTEHM.2024.3365300. eCollection 2024.
9
Low Mg content on Ti-Nb-Sn alloy when in contact with eBMMSCs promotes improvement of its biological functions.
J Mater Sci Mater Med. 2021 Dec 4;32(12):144. doi: 10.1007/s10856-021-06620-9.

本文引用的文献

1
Compressive behaviour of child and adult cortical bone.
Bone. 2011 Oct;49(4):769-76. doi: 10.1016/j.bone.2011.06.035. Epub 2011 Jul 6.
2
Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.
Acta Biomater. 2011 Aug;7(8):3170-7. doi: 10.1016/j.actbio.2011.04.025. Epub 2011 Apr 30.
3
Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues.
J Mech Behav Biomed Mater. 2011 Jul;4(5):807-20. doi: 10.1016/j.jmbbm.2010.10.001. Epub 2010 Oct 17.
4
Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions.
J Biomech. 2010 Sep 17;43(13):2460-6. doi: 10.1016/j.jbiomech.2010.05.032. Epub 2010 Jun 15.
5
Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
J Mech Behav Biomed Mater. 2009 Dec;2(6):613-9. doi: 10.1016/j.jmbbm.2008.11.008. Epub 2008 Dec 13.
6
Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
J Biomech. 2009 Mar 11;42(4):491-7. doi: 10.1016/j.jbiomech.2008.11.016. Epub 2009 Jan 17.
7
Strain redistribution and cracking behavior of human bone during bending.
Bone. 2007 May;40(5):1265-75. doi: 10.1016/j.bone.2006.12.065. Epub 2007 Jan 8.
9
A novel approach to assess post-yield energy dissipation of bone in tension.
J Biomech. 2007;40(3):674-7. doi: 10.1016/j.jbiomech.2006.02.002.
10
Mechanisms of uniformity of yield strains for trabecular bone.
J Biomech. 2004 Nov;37(11):1671-8. doi: 10.1016/j.jbiomech.2004.02.045.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验