Suppr超能文献

具有三重周期极小曲面的新型分段非线性功能梯度股骨和颅骨植入物的可调多向力学属性。

Tuneable multidirectional mechanical attributes of novel sectionally nonlinearly functionally graded femur and cranial bone implants with triply periodic minimal surfaces.

作者信息

Van Viet Nguyen, Zaki Wael, El-Rich Marwan

机构信息

Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.

Smart and Architected Materials Laboratory, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.

出版信息

PLoS One. 2025 Sep 9;20(9):e0332104. doi: 10.1371/journal.pone.0332104. eCollection 2025.

Abstract

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns. And TPMS scaffolds are smooth, porous structures that repeat in three dimensions and have zero mean curvature, offering high surface area and tuneable properties. This study presents a novel design and numerical analysis of SNFG titanium alloy Ti6Al4V femur and cranial bone implants incorporating TPMSs. The accuracy of the numerical model is validated through experiments and force-reaction analysis in terms of elastic stiffness of the white Polylactic Acid (PLA)-based SNFG femur and cranial bone implants, demonstrating good agreement among methods, having a maximum percentage difference of 15.6%. It is found that among various TPMS topologies, the gyroid structure is the most suitable candidate for manufacturing SNFG bone implants, offering superior multidirectional mechanical performance. Interestingly, the anisotropy and magnitude of elastic stiffness can be tailored to closely match natural bone by adjusting the gradient index and trabecular part length while maintaining a yield strength higher than that of bone. Additionally, during service, the implant may be subjected to an impact that generates mechanical waves propagating through its structure. These waves transmit the force impulse and induce the propagation of mechanical stress throughout the implant body. The result indicates that increasing the gradient index reduces shear and longitudinal stress wave velocities with minimal impact on wave velocity anisotropy, a key factor in enhancing implant longevity and performance. And, TPMS implants exhibit extreme multiaxial yield strength anisotropy, but it can be accurately captured using the extended Hill's criterion, which provides a reliable and cost-efficient method for constructing the critical yield surface of SNFG femur and cranial titanium implants, helping to prevent permanent plastic deformation during service. Overall, this work lays the foundation for futuristic optimization approach aimed at designing ideal SNFG titanium femur and cranial bone implants with TPMSs for biomedical applications.

摘要

具有三重周期极小曲面(TPMS)的分段非线性功能梯度(SNFG)结构被认为是骨植入物的理想选择,因为它们紧密复制了天然骨的分层、各向异性和多孔结构。材料分布中的平滑梯度允许最佳的载荷传递、减少应力屏蔽并促进骨长入,而TPMS提供了高机械强度重量比以及用于血管化和组织整合的相互连通的孔隙率。其中,SNFG结构包含厚度沿其长度以不同模式非线性变化的部分。并且TPMS支架是在三个维度上重复且平均曲率为零的光滑多孔结构,具有高表面积和可调节的特性。本研究提出了一种结合TPMS的SNFG钛合金Ti6Al4V股骨和颅骨植入物的新颖设计和数值分析。通过基于白色聚乳酸(PLA)的SNFG股骨和颅骨植入物的弹性刚度的实验和力 - 反应分析验证了数值模型的准确性,表明各方法之间具有良好的一致性,最大百分比差异为15.6%。研究发现,在各种TPMS拓扑结构中,类螺旋结构是制造SNFG骨植入物的最合适候选结构,具有卓越的多向力学性能。有趣的是,通过调整梯度指数和小梁部分长度,同时保持高于骨的屈服强度,可以调整弹性刚度的各向异性和大小,使其与天然骨紧密匹配。此外,在使用过程中,植入物可能会受到产生通过其结构传播的机械波的冲击。这些波传递力脉冲并诱导机械应力在整个植入物体内传播。结果表明,增加梯度指数会降低剪切波和纵向应力波速度,同时对波速度各向异性的影响最小,这是提高植入物寿命和性能的关键因素。并且,TPMS植入物表现出极端的多轴屈服强度各向异性,但可以使用扩展的希尔准则准确捕捉,该准则为构建SNFG股骨和颅骨钛植入物的临界屈服面提供了一种可靠且经济高效的方法,有助于防止在使用过程中发生永久塑性变形。总体而言,这项工作为未来旨在设计具有TPMS的理想SNFG钛股骨和颅骨植入物用于生物医学应用的优化方法奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea8/12419660/f9311ae7716a/pone.0332104.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验