Suppr超能文献

用于有分类错误的二项结局和相关生存数据的贝叶斯模型及其在乳腺癌中的应用。

A Bayesian model for misclassified binary outcomes and correlated survival data with applications to breast cancer.

机构信息

Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St, Houston, Texas 77030, USA.

出版信息

Stat Med. 2013 Jun 15;32(13):2320-34. doi: 10.1002/sim.5629. Epub 2012 Sep 21.

Abstract

Breast cancer patients may experience ipsilateral breast tumor relapse (IBTR) after breast conservation therapy. IBTR is classified as either true local recurrence or new ipsilateral primary tumor. The correct classification of IBTR status has significant implications in therapeutic decision-making and patient management. However, the diagnostic tests to classify IBTR are imperfect and prone to misclassification. In addition, some observed survival data (e.g., time to relapse, time from relapse to death) are strongly correlated with IBTR status. We present a Bayesian approach to model the potentially misclassified IBTR status and the correlated survival information. We conduct the inference using a Bayesian framework via Markov chain Monte Carlo simulation implemented in WinBUGS. Extensive simulation shows that the proposed method corrects biases and provides more efficient estimates for the covariate effects on the probability of IBTR and the diagnostic test accuracy. Moreover, our method provides useful subject-specific patient prognostic information. Our method is motivated by, and applied to, a dataset of 397 breast cancer patients.

摘要

乳腺癌患者在接受保乳治疗后可能会出现同侧乳腺肿瘤复发(IBTR)。IBTR 分为真正的局部复发或新的同侧原发性肿瘤。正确分类 IBTR 状态对治疗决策和患者管理具有重要意义。然而,用于分类 IBTR 的诊断测试并不完善,容易出现分类错误。此外,一些观察到的生存数据(例如,复发时间、从复发到死亡的时间)与 IBTR 状态密切相关。我们提出了一种贝叶斯方法来模拟可能被错误分类的 IBTR 状态和相关的生存信息。我们通过 Markov 链蒙特卡罗模拟在 WinBUGS 中使用贝叶斯框架进行推断。广泛的模拟表明,该方法纠正了偏差,并为 IBTR 概率和诊断测试准确性的协变量效应提供了更有效的估计。此外,我们的方法提供了有用的个体患者预后信息。我们的方法是基于并应用于 397 名乳腺癌患者的数据集。

相似文献

1
A Bayesian model for misclassified binary outcomes and correlated survival data with applications to breast cancer.
Stat Med. 2013 Jun 15;32(13):2320-34. doi: 10.1002/sim.5629. Epub 2012 Sep 21.
2
Joint model for a diagnostic test without a gold standard in the presence of a dependent terminal event.
Stat Med. 2014 Jul 10;33(15):2554-66. doi: 10.1002/sim.6101. Epub 2014 Jan 29.
3
Simultaneous inference of a misclassified outcome and competing risks failure time data.
J Appl Stat. 2015;42(5):1080-1090. doi: 10.1080/02664763.2014.995606.
7
Network meta-analysis of margin threshold for women with ductal carcinoma in situ.
J Natl Cancer Inst. 2012 Apr 4;104(7):507-16. doi: 10.1093/jnci/djs142. Epub 2012 Mar 22.
8
Prognostic Impact of Time to Ipsilateral Breast Tumor Recurrence after Breast Conserving Surgery.
PLoS One. 2016 Aug 5;11(8):e0159888. doi: 10.1371/journal.pone.0159888. eCollection 2016.
10
Inference on cancer screening exam accuracy using population-level administrative data.
Stat Med. 2016 Jan 15;35(1):130-46. doi: 10.1002/sim.6619. Epub 2015 Aug 16.

引用本文的文献

本文引用的文献

1
The chemokine, CXCL12, is an independent predictor of poor survival in ovarian cancer.
Br J Cancer. 2012 Mar 27;106(7):1306-13. doi: 10.1038/bjc.2012.49. Epub 2012 Mar 13.
3
Identifiability of models for multiple diagnostic testing in the absence of a gold standard.
Biometrics. 2010 Sep;66(3):855-63. doi: 10.1111/j.1541-0420.2009.01330.x.
6
Bayesian semiparametric ROC curve estimation and disease diagnosis.
Stat Med. 2008 Jun 15;27(13):2474-96. doi: 10.1002/sim.3250.
8
A likelihood reformulation method in non-normal random effects models.
Stat Med. 2008 Jul 20;27(16):3105-24. doi: 10.1002/sim.3153.
9
The use of Gaussian quadrature for estimation in frailty proportional hazards models.
Stat Med. 2008 Jun 30;27(14):2665-83. doi: 10.1002/sim.3077.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验