Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St, Houston, Texas 77030, USA.
Stat Med. 2013 Jun 15;32(13):2320-34. doi: 10.1002/sim.5629. Epub 2012 Sep 21.
Breast cancer patients may experience ipsilateral breast tumor relapse (IBTR) after breast conservation therapy. IBTR is classified as either true local recurrence or new ipsilateral primary tumor. The correct classification of IBTR status has significant implications in therapeutic decision-making and patient management. However, the diagnostic tests to classify IBTR are imperfect and prone to misclassification. In addition, some observed survival data (e.g., time to relapse, time from relapse to death) are strongly correlated with IBTR status. We present a Bayesian approach to model the potentially misclassified IBTR status and the correlated survival information. We conduct the inference using a Bayesian framework via Markov chain Monte Carlo simulation implemented in WinBUGS. Extensive simulation shows that the proposed method corrects biases and provides more efficient estimates for the covariate effects on the probability of IBTR and the diagnostic test accuracy. Moreover, our method provides useful subject-specific patient prognostic information. Our method is motivated by, and applied to, a dataset of 397 breast cancer patients.
乳腺癌患者在接受保乳治疗后可能会出现同侧乳腺肿瘤复发(IBTR)。IBTR 分为真正的局部复发或新的同侧原发性肿瘤。正确分类 IBTR 状态对治疗决策和患者管理具有重要意义。然而,用于分类 IBTR 的诊断测试并不完善,容易出现分类错误。此外,一些观察到的生存数据(例如,复发时间、从复发到死亡的时间)与 IBTR 状态密切相关。我们提出了一种贝叶斯方法来模拟可能被错误分类的 IBTR 状态和相关的生存信息。我们通过 Markov 链蒙特卡罗模拟在 WinBUGS 中使用贝叶斯框架进行推断。广泛的模拟表明,该方法纠正了偏差,并为 IBTR 概率和诊断测试准确性的协变量效应提供了更有效的估计。此外,我们的方法提供了有用的个体患者预后信息。我们的方法是基于并应用于 397 名乳腺癌患者的数据集。