Suppr超能文献

相关生存数据的快速变分贝叶斯推断:在有创机械通气持续时间分析中的应用

Fast Variational Bayesian Inference for Correlated Survival Data: An Application to Invasive Mechanical Ventilation Duration Analysis.

作者信息

Xian Chengqian, P E de Souza Camila, He Wenqing, Rodrigues Felipe F, Tian Renfang

机构信息

Department of Statistical and Actuarial Sciences, Western University, London, Canada.

School of Management, Economics, and Mathematics, King's University College at Western University, London, Canada.

出版信息

Stat Med. 2025 Jul;44(15-17):e70198. doi: 10.1002/sim.70198.

Abstract

Correlated survival data are prevalent in various clinical settings and have been extensively discussed in the literature. A common example is clustered survival data, where survival times are associated due to shared characteristics within clusters. In our study, we analyze invasive mechanical ventilation data collected from multiple intensive care units (ICUs) across Ontario, Canada. Patients within the same ICU exhibit similarities in clinical profiles and mechanical ventilation settings, leading to a correlation in their ventilation durations. To address this association, we introduce a shared frailty log-logistic accelerated failure time model that accounts for intra-cluster correlation through a cluster-specific random intercept. We present a novel, fast variational Bayes (VB) algorithm for parameter inference and evaluate its performance using simulation studies varying the number of clusters and their sizes. We further compare the performance of our proposed VB algorithm with the h-likelihood method and a Markov Chain Monte Carlo (MCMC) algorithm. The proposed algorithm delivers satisfactory results and demonstrates computational efficiency over the MCMC algorithm. We apply our method to ICU ventilation data from Ontario to investigate the ICU-site random effect on ventilation duration.

摘要

相关生存数据在各种临床环境中普遍存在,并且在文献中已经进行了广泛讨论。一个常见的例子是聚类生存数据,其中生存时间由于聚类内的共享特征而相关。在我们的研究中,我们分析了从加拿大安大略省多个重症监护病房(ICU)收集的有创机械通气数据。同一ICU内的患者在临床特征和机械通气设置方面表现出相似性,导致他们的通气持续时间存在相关性。为了解决这种关联,我们引入了一个共享脆弱性对数逻辑加速失效时间模型,该模型通过特定于聚类的随机截距来考虑聚类内相关性。我们提出了一种新颖、快速的变分贝叶斯(VB)算法用于参数推断,并使用改变聚类数量及其大小的模拟研究来评估其性能。我们进一步将我们提出的VB算法的性能与h似然法和马尔可夫链蒙特卡罗(MCMC)算法进行比较。所提出的算法给出了令人满意的结果,并展示了相对于MCMC算法的计算效率。我们将我们的方法应用于安大略省的ICU通气数据,以研究ICU地点对通气持续时间的随机效应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验