Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
Free Radic Res. 2012 Dec;46(12):1496-513. doi: 10.3109/10715762.2012.731052. Epub 2012 Oct 4.
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O(2)(•-)) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO(-)) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O(2)(•-) and ONOO(-) during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O(2)(•-) production and downstream reactions involving NO, O(2)(•-), ONOO(-), H(2)O(2) and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O(2)(•-), ONOO(-) and H(2)O(2) in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O(2)(•-) production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O(2)(•-) concentration by 90% at all [BH(4)]/[TBP] ratios, (iv) SOD reduces ONOO(-) concentration and increases H(2)O(2) concentration during eNOS uncoupling, (v) Catalase can reduce H(2)O(2) concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress.
在内皮细胞功能障碍中,eNOS 的解偶联导致超氧化物(O(2)(•-))生成增加、NO 生成减少以及 NO 可用性降低。超氧化物与 NO 反应形成一种强氧化剂过氧亚硝酸盐(ONOO(-)),导致硝化和氧化应激,并歧化为过氧化氢。研究表明,超氧化物歧化酶(SOD)在 eNOS 解偶联过程中减少 O(2)(•-)和 ONOO(-)的形成中发挥重要作用。然而,在某些情况下,SOD 的给药或过表达无效或显示出有害作用。了解 eNOS 和 SOD 这两个酶系统的相互作用对于确定内皮细胞功能非常重要。我们分析了 eNOS 解偶联过程中涉及 eNOS 和 SOD 的复杂生化相互作用。建立了一个涉及 eNOS 相关 NO 和 O(2)(•-)生成以及涉及 NO、O(2)(•-)、ONOO(-)、H(2)O(2)和 SOD 的下游反应的生化途径的计算模型。研究了 SOD 浓度对 eNOS 偶联/解偶联过程中 NO、O(2)(•-)、ONOO(-)和 H(2)O(2)浓度分布的影响。结果包括:(i) SOD 适度改善 eNOS 解偶联过程中 NO 的生成和浓度;(ii) SOD 浓度不影响 O(2)(•-)的生成速率;(iii) SOD 浓度从 0.1 到 100 μM 增加时,在所有 [BH(4)]/[TBP] 比值下,O(2)(•-)浓度降低 90%;(iv) SOD 降低 eNOS 解偶联过程中的 ONOO(-)浓度并增加 H(2)O(2)浓度;(v) 过氧化氢酶可以降低 H(2)O(2)浓度;(vi) 在 eNOS 解偶联过程中,SOD 的歧化速率是最敏感的参数。因此,SOD 在 eNOS 解偶联中发挥双重作用,既是硝化/氧化应激的抑制剂,又是氧化应激的增强剂。