Suppr超能文献

在觉醒期间,对peri-fornical-hypothalamic 区域的 CO₂进行局部微透析会增加通气,但不会增加非快速动眼睡眠期间的通气。

Focal microdialysis of CO₂ in the perifornical-hypothalamic area increases ventilation during wakefulness but not NREM sleep.

机构信息

Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States.

出版信息

Respir Physiol Neurobiol. 2013 Jan 15;185(2):349-55. doi: 10.1016/j.resp.2012.09.007. Epub 2012 Sep 19.

Abstract

We investigated whether the perifornical-lateral hypothalamic area (PF-LHA), where the orexin neurons reside, is a central chemoreceptor site by microdialysis of artificial cerebrospinal fluid (aCSF) equilibrated with 25% CO(2) into PF-LHA in conscious rats. This treatment is known to produce a focal tissue acidification like that associated with a 6-7 mm Hg increase in arterial [Formula: see text] . Such focal acidification in the PF-LHA significantly increased ventilation up to 15% compared with microdialysis of normal aCSF equilibrated with 5% CO(2) only in wakefulness but not in sleep in both the dark (P=0.004) and light (P<0.001) phases of the diurnal cycle. This response was predominantly due to a significant increase in respiratory frequency (11%, P<0.001). There were no significant effects on ventilation in the group with probes misplaced outside the PF-LHA. These results suggest that PF-LHA functions as a central chemoreceptor site in the central nervous system in a vigilant state dependent manner with predominant effects in wakefulness.

摘要

我们通过将与 25%CO2 平衡的人工脑脊液(aCSF)微透析到清醒大鼠的 PF-LHA(下丘脑外侧近旁核所在区域)中来研究 PF-LHA 是否是中枢化学感受器位点。这种处理已知会产生类似于动脉[Formula: see text]增加 6-7mmHg 时的局部组织酸化。与仅用 5%CO2 平衡的正常 aCSF 进行微透析相比,PF-LHA 中的这种局部酸化在清醒时但不在睡眠时(无论在黑暗(P=0.004)还是在光(P<0.001)周期中)均显著增加通气高达 15%。这种反应主要是由于呼吸频率显著增加(11%,P<0.001)。在探针放置在 PF-LHA 之外的组中,通气没有显著影响。这些结果表明,PF-LHA 在警觉状态下以依赖于中枢神经系统的方式作为中枢化学感受器位点发挥作用,其主要作用是在清醒时。

相似文献

1
Focal microdialysis of CO₂ in the perifornical-hypothalamic area increases ventilation during wakefulness but not NREM sleep.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):349-55. doi: 10.1016/j.resp.2012.09.007. Epub 2012 Sep 19.
2
Sleep-wake and diurnal modulation of nitric oxide in the perifornical-lateral hypothalamic area: real-time detection in freely behaving rats.
Neuroscience. 2013 Dec 19;254:275-84. doi: 10.1016/j.neuroscience.2013.09.022. Epub 2013 Sep 19.
3
A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats.
Neuroscience. 2010 Apr 28;167(1):40-8. doi: 10.1016/j.neuroscience.2010.01.044. Epub 2010 Jan 28.
5
GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats.
J Physiol. 2005 Mar 1;563(Pt 2):569-82. doi: 10.1113/jphysiol.2004.076927. Epub 2004 Dec 21.
6
CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness.
J Appl Physiol (1985). 2002 May;92(5):2119-30. doi: 10.1152/japplphysiol.01128.2001.
7
ATP in the lateral hypothalamus/perifornical area enhances the CO chemoreflex control of breathing.
Exp Physiol. 2018 Dec;103(12):1679-1691. doi: 10.1113/EP087182. Epub 2018 Oct 17.
8
Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats.
Brain Res. 2009 Dec 22;1304:96-104. doi: 10.1016/j.brainres.2009.09.066. Epub 2009 Sep 23.
9
Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat.
Eur J Neurosci. 2007 Jan;25(1):201-12. doi: 10.1111/j.1460-9568.2006.05268.x.
10
Adenosine in the lateral hypothalamus/perifornical area does not participate on the CO chemoreflex.
Respir Physiol Neurobiol. 2020 May;276:103368. doi: 10.1016/j.resp.2020.103368. Epub 2020 Feb 22.

引用本文的文献

1
Galaninergic and hypercapnia-activated neuronal projections to the ventral respiratory column.
Brain Struct Funct. 2024 Jun;229(5):1121-1142. doi: 10.1007/s00429-024-02782-8. Epub 2024 Apr 5.
2
Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups.
Front Physiol. 2023 Sep 1;14:1241662. doi: 10.3389/fphys.2023.1241662. eCollection 2023.
3
The effects of P2Y adenosine receptors' inhibitors on central and peripheral chemoreflexes.
Front Physiol. 2023 Jul 19;14:1214893. doi: 10.3389/fphys.2023.1214893. eCollection 2023.
4
The integrated brain network that controls respiration.
Elife. 2023 Mar 8;12:e83654. doi: 10.7554/eLife.83654.
5
The effect of orexin on the hypoxic ventilatory response of female rats is greatest in the active phase during diestrus.
J Appl Physiol (1985). 2023 Mar 1;134(3):638-648. doi: 10.1152/japplphysiol.00661.2022. Epub 2023 Jan 19.
6
Forebrain control of breathing: Anatomy and potential functions.
Front Neurol. 2022 Nov 1;13:1041887. doi: 10.3389/fneur.2022.1041887. eCollection 2022.
7
CO exposure enhances Fos expression in hypothalamic neurons in rats during the light and dark phases of the diurnal cycle.
Brain Struct Funct. 2022 Nov;227(8):2667-2679. doi: 10.1007/s00429-022-02562-2. Epub 2022 Sep 15.
8
ACE2 in male genitourinary and endocrine systems: Does COVID-19 really affect these systems?
Histol Histopathol. 2023 Mar;38(3):261-272. doi: 10.14670/HH-18-510. Epub 2022 Sep 7.
9
Central respiratory chemoreception.
Handb Clin Neurol. 2022;188:37-72. doi: 10.1016/B978-0-323-91534-2.00007-2.
10
COVID-19 and Neurological Impairment: Hypothalamic Circuits and Beyond.
Viruses. 2021 Mar 17;13(3):498. doi: 10.3390/v13030498.

本文引用的文献

1
Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.
PLoS One. 2012;7(7):e39982. doi: 10.1371/journal.pone.0039982. Epub 2012 Jul 6.
2
Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle.
J Physiol. 2010 Aug 1;588(Pt 15):2935-44. doi: 10.1113/jphysiol.2010.191288. Epub 2010 Jun 14.
3
The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation.
J Appl Physiol (1985). 2010 May;108(5):1425-32. doi: 10.1152/japplphysiol.01270.2009. Epub 2010 Feb 4.
4
High CO2/H+ dialysis in the caudal ventrolateral medulla (Loeschcke's area) increases ventilation in wakefulness.
Respir Physiol Neurobiol. 2010 Apr 15;171(1):46-53. doi: 10.1016/j.resp.2010.01.014. Epub 2010 Feb 1.
5
CO2 activates orexin-containing neurons in mice.
Respir Physiol Neurobiol. 2009 May 15;166(3):184-6. doi: 10.1016/j.resp.2009.03.006. Epub 2009 Mar 24.
6
The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity.
J Appl Physiol (1985). 2008 Aug;105(2):404-16. doi: 10.1152/japplphysiol.90452.2008. Epub 2008 Jun 5.
7
Locus coeruleus noradrenergic neurons and CO2 drive to breathing.
Pflugers Arch. 2008 Mar;455(6):1119-28. doi: 10.1007/s00424-007-0338-8. Epub 2007 Sep 13.
8
Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice.
J Appl Physiol (1985). 2007 Nov;103(5):1772-9. doi: 10.1152/japplphysiol.00075.2007. Epub 2007 Aug 23.
9
Control of hypothalamic orexin neurons by acid and CO2.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10685-90. doi: 10.1073/pnas.0702676104. Epub 2007 Jun 11.
10
Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice.
J Appl Physiol (1985). 2007 Jan;102(1):241-8. doi: 10.1152/japplphysiol.00679.2006. Epub 2006 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验