Suppr超能文献

A1 受体介导的自由活动大鼠穹窿周-外侧下丘脑区神经元的腺苷能调节。

A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats.

机构信息

Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA, USA.

出版信息

Neuroscience. 2010 Apr 28;167(1):40-8. doi: 10.1016/j.neuroscience.2010.01.044. Epub 2010 Jan 28.

Abstract

The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A(1) receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A(1) receptor, the in vivo effects of A(1) receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N(6)-cyclopentyladenosine (CPA), an adenosine A(1) receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A(1) receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA on Fos-IR was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50 muM) and CPDX (50 muM) that suppressed and induced arousal, respectively, in our earlier study [Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D (2009) Brain Res 1304:96-104], significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A(1) receptors, in part, inhibits HCRT neurons to promote sleep.

摘要

peri-fornical-lateral 下丘脑区域(PF-LHA)在调节行为觉醒中起着核心作用。PF-LHA 包含几种神经元类型,包括觉醒活性的食欲肽(HCRT)神经元,这些神经元被认为在促进和/或维持行为觉醒中发挥作用。腺苷是一种内源性睡眠因子,最近的证据表明,PF-LHA 内的腺苷 A1 受体的激活和阻断分别促进和抑制睡眠。尽管一项体外研究表明,腺苷通过 A1 受体抑制 HCRT 神经元,但 A1 受体介导的腺苷能传递对包括 HCRT 神经元在内的 PF-LHA 神经元的体内影响尚不清楚。首先,我们通过放置在与微透析探针相邻的微丝上记录的方法,确定了 N(6)-环戊基腺苷(CPA),一种腺苷 A1 受体激动剂,对 PF-LHA 神经元的睡眠-觉醒放电活动的影响。其次,我们确定了 CPA 和 A1 受体拮抗剂 1,3-二丙基-8-苯基黄嘌呤(CPDX)在 PF-LHA 中的作用对微透析探针周围 HCRT 和非 HCRT 神经元中 cFos 蛋白免疫反应性(Fos-IR)的影响。CPA 对 Fos-IR 的影响是在光照关闭阶段保持清醒的大鼠中进行研究的,而 CPDX 对光照开启阶段未受干扰的大鼠中的影响则是在光照开启阶段进行研究的。CPA 显著抑制了 PF-LHA 神经元的睡眠-觉醒放电活动。在我们之前的研究中,CPA(50 μM)和 CPDX(50 μM)的剂量分别抑制和诱导觉醒[Alam MN、Kumar S、Rai S、Methippara M、Szymusiak R、McGinty D(2009)Brain Res 1304:96-104],显著抑制和增加了 HCRT 和非 HCRT 神经元中的 Fos-IR。这些发现表明,促觉醒的 PF-LHA 系统受到内源性腺苷能抑制的增强,并且通过 A1 受体作用的腺苷部分抑制 HCRT 神经元以促进睡眠。

相似文献

1
A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats.
Neuroscience. 2010 Apr 28;167(1):40-8. doi: 10.1016/j.neuroscience.2010.01.044. Epub 2010 Jan 28.
2
Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats.
Brain Res. 2009 Dec 22;1304:96-104. doi: 10.1016/j.brainres.2009.09.066. Epub 2009 Sep 23.
3
Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat.
Eur J Neurosci. 2007 Jan;25(1):201-12. doi: 10.1111/j.1460-9568.2006.05268.x.
5
GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats.
J Physiol. 2005 Mar 1;563(Pt 2):569-82. doi: 10.1113/jphysiol.2004.076927. Epub 2004 Dec 21.
7
Wake-promoting actions of noradrenergic α1 - and β-receptors within the lateral hypothalamic area.
Eur J Neurosci. 2013 Mar;37(6):891-900. doi: 10.1111/ejn.12084. Epub 2012 Dec 18.
8
9
Sleep-wake and diurnal modulation of nitric oxide in the perifornical-lateral hypothalamic area: real-time detection in freely behaving rats.
Neuroscience. 2013 Dec 19;254:275-84. doi: 10.1016/j.neuroscience.2013.09.022. Epub 2013 Sep 19.
10
GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats.
Neuroscience. 2010 May 19;167(3):920-8. doi: 10.1016/j.neuroscience.2010.02.038. Epub 2010 Feb 24.

引用本文的文献

1
Compound 38, a novel potent and selective antagonist of adenosine A receptor, enhances arousal in mice.
Acta Pharmacol Sin. 2025 May;46(5):1177-1189. doi: 10.1038/s41401-024-01443-0. Epub 2025 Jan 8.
2
Adenosine-Dependent Arousal Induced by Astrocytes in a Brainstem Circuit.
Adv Sci (Weinh). 2024 Dec;11(48):e2407706. doi: 10.1002/advs.202407706. Epub 2024 Nov 4.
4
The Mutual Interaction Between Sleep and Epilepsy on the Neurobiological Basis and Therapy.
Curr Neuropharmacol. 2018;16(1):5-16. doi: 10.2174/1570159X15666170509101237.
5
The role of adenosine in the maturation of sleep homeostasis in rats.
J Neurophysiol. 2017 Jan 1;117(1):327-335. doi: 10.1152/jn.00675.2016. Epub 2016 Oct 26.
6
To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance.
Front Syst Neurosci. 2015 Feb 18;9:9. doi: 10.3389/fnsys.2015.00009. eCollection 2015.
7
Orexin A attenuates the sleep-promoting effect of adenosine in the lateral hypothalamus of rats.
Neurosci Bull. 2014 Oct;30(5):877-86. doi: 10.1007/s12264-013-1442-8. Epub 2014 Jun 5.
10
Sites of action of sleep and wake drugs: insights from model organisms.
Curr Opin Neurobiol. 2013 Oct;23(5):831-40. doi: 10.1016/j.conb.2013.04.010. Epub 2013 May 23.

本文引用的文献

2
Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats.
Brain Res. 2009 Dec 22;1304:96-104. doi: 10.1016/j.brainres.2009.09.066. Epub 2009 Sep 23.
3
Role of the melanin-concentrating hormone neuropeptide in sleep regulation.
Peptides. 2009 Nov;30(11):2052-9. doi: 10.1016/j.peptides.2009.07.022. Epub 2009 Aug 4.
4
Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2418-22. doi: 10.1073/pnas.0811400106. Epub 2009 Feb 2.
5
The energy hypothesis of sleep revisited.
Prog Neurobiol. 2008 Nov;86(3):264-80. doi: 10.1016/j.pneurobio.2008.08.003. Epub 2008 Sep 3.
6
Hypothalamic regulation of sleep and arousal.
Ann N Y Acad Sci. 2008;1129:275-86. doi: 10.1196/annals.1417.027.
7
Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep.
Neurosci Lett. 2008 Jul 18;439(3):281-6. doi: 10.1016/j.neulet.2008.05.042. Epub 2008 May 17.
8
Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness.
Neuroscience. 2008 Jun 2;153(4):875-80. doi: 10.1016/j.neuroscience.2008.01.017. Epub 2008 Jan 19.
9
Orexin neuronal circuitry: role in the regulation of sleep and wakefulness.
Front Neuroendocrinol. 2008 Jan;29(1):70-87. doi: 10.1016/j.yfrne.2007.08.001. Epub 2007 Aug 29.
10
Neurobiology of REM and NREM sleep.
Sleep Med. 2007 Jun;8(4):302-30. doi: 10.1016/j.sleep.2007.03.005. Epub 2007 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验