Chemical Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
J Magn Reson. 2012 Nov;224:13-21. doi: 10.1016/j.jmr.2012.08.013. Epub 2012 Aug 25.
Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of (1)H and (13)C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental (1)H and (13)C MAS-DNP enhancements of proline and SH3.
魔角旋转(MAS)动态核极化(DNP)已被证明是一种非常有效的方法,可以提高固体 NMR 实验的信噪比。一般来说,这些实验是在考虑固态效应(SE)和交叉效应(CE)DNP 机制的情况下进行解释的,而忽略了样品旋转的影响。在本文中,我们展示了 MAS-DNP 增强(1)H 和(13)C 在脯氨酸和 SH3 蛋白质中的实验数据,这些实验是在含有 TOTAPOL 的玻璃形成水/甘油溶剂中进行的。我们还引入了一个理论模型,旨在解释核极化如何在 MAS-DNP 实验中建立。通过使用基于刘维尔空间的模拟,包括两个简单自旋模型{电子-核}和{电子-电子-核}上的弛豫,我们解释了 MAS-SE-DNP 和 MAS-CE-DNP 基本过程是如何工作的。强调了快速能量传递和短能级交叉的重要性,并解释了静态 DNP 和 MAS-DNP 之间的区别。在单个转子周期内,{电子-电子-核}系统中的增强来自于至少涉及三种两种能级快速通道的 MAS-CE-DNP:电子-电子偶极子反交叉、单量子电子 MW 遭遇和在 CE 条件下诱导核极化的反交叉。进行了数值、粉末平均模拟,以检查实验参数对增强效率的影响。特别是,我们表明理论 MAS-CE-DNP 增强的自旋频率依赖性与实验(1)H 和(13)C MAS-DNP 增强脯氨酸和 SH3 的结果非常吻合。