Suppr超能文献

打破沉默:蛋白质稳定揭示了真菌构巢曲霉中沉默的生物合成基因簇。

Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans.

机构信息

Abteilung für Molekulare Mikrobiologie & Genetik, Institut für Mikrobiologie & Genetik, Georg August Universität, Göttingen, Germany.

出版信息

Appl Environ Microbiol. 2012 Dec;78(23):8234-44. doi: 10.1128/AEM.01808-12. Epub 2012 Sep 21.

Abstract

The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.

摘要

丝状真菌的基因组包含许多推测的基因簇,这些基因簇编码化学和结构上多样化的次生代谢物(SMs)的生物合成,这些基因簇在实验室条件下很少表达。以前激活这些基因的方法主要基于人工靶向细胞蛋白质合成装置。在这里,我们通过删除保守的真核 COP9 信号体的 csnE/CSN5 去泛素化酶亚基,应用了一种通过遗传破坏模型真菌构巢曲霉的蛋白质降解装置的替代方法。这种蛋白质降解的缺陷导致先前沉默的基因簇的激活,该基因簇包含一个产生抗生素 2,4-二羟基-3-甲基-6-(2-氧代丙基)苯甲醛(DHMBA)的聚酮合酶基因。csnE/CSN5 基因在真菌中高度保守,因此,缺失是鉴定新 SMs 的可行方法。

相似文献

1
Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans.
Appl Environ Microbiol. 2012 Dec;78(23):8234-44. doi: 10.1128/AEM.01808-12. Epub 2012 Sep 21.
4
The csnD/csnE signalosome genes are involved in the Aspergillus nidulans DNA damage response.
Genetics. 2005 Nov;171(3):1003-15. doi: 10.1534/genetics.105.041376. Epub 2005 Aug 3.
6
Control of multicellular development by the physically interacting deneddylases DEN1/DenA and COP9 signalosome.
PLoS Genet. 2013;9(2):e1003275. doi: 10.1371/journal.pgen.1003275. Epub 2013 Feb 7.
8
Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates.
mSphere. 2020 Apr 8;5(2):e00156-20. doi: 10.1128/mSphere.00156-20.
9
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7. doi: 10.1073/pnas.1103523108. Epub 2011 Aug 8.
10
An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):8089-94. doi: 10.1073/pnas.0702108104. Epub 2007 Apr 30.

引用本文的文献

1
Molecular circuit between Aspergillus nidulans transcription factors MsnA and VelB to coordinate fungal stress and developmental responses.
PLoS Genet. 2025 Jul 17;21(7):e1011578. doi: 10.1371/journal.pgen.1011578. eCollection 2025 Jul.
3
Current Approaches and Implications in Discovery of Novel Bioactive Products from Microbial Sources.
Curr Microbiol. 2025 Apr 22;82(6):258. doi: 10.1007/s00284-025-04237-7.
4
Biosynthesis of Antibacterial Iron-Chelating Tropolones in as Response to Glycopeptide-Producing Streptomycetes.
Front Fungal Biol. 2022 Jan 3;2:777474. doi: 10.3389/ffunb.2021.777474. eCollection 2021.
5
Fungal COP9 signalosome assembly requires connection of two trimeric intermediates for integration of intrinsic deneddylase.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2305049120. doi: 10.1073/pnas.2305049120. Epub 2023 Aug 21.
6
Recent advances on Pestalotiopsis genus: chemistry, biological activities, structure-activity relationship, and biosynthesis.
Arch Pharm Res. 2023 Jun;46(6):449-499. doi: 10.1007/s12272-023-01453-2. Epub 2023 Jun 30.
7
The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites.
Microorganisms. 2023 Feb 12;11(2):464. doi: 10.3390/microorganisms11020464.
8
How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances.
Pharmaceutics. 2022 Aug 31;14(9):1837. doi: 10.3390/pharmaceutics14091837.
9
Secondary metabolite biosynthetic diversity in the fungal family and .
Stud Mycol. 2021 Aug 26;99:100118. doi: 10.1016/j.simyco.2021.100118. eCollection 2021 Jun.

本文引用的文献

1
The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism.
PLoS Genet. 2012;8(7):e1002816. doi: 10.1371/journal.pgen.1002816. Epub 2012 Jul 19.
2
Illuminating the diversity of aromatic polyketide synthases in Aspergillus nidulans.
J Am Chem Soc. 2012 May 16;134(19):8212-21. doi: 10.1021/ja3016395. Epub 2012 May 1.
3
Reengineering an azaphilone biosynthesis pathway in Aspergillus nidulans to create lipoxygenase inhibitors.
Org Lett. 2012 Feb 17;14(4):972-5. doi: 10.1021/ol203094k. Epub 2012 Feb 1.
5
Cytotoxic pheofungins from an engineered fungus impaired in posttranslational protein modification.
Angew Chem Int Ed Engl. 2011 Oct 10;50(42):9843-7. doi: 10.1002/anie.201104488. Epub 2011 Sep 12.
6
Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14282-7. doi: 10.1073/pnas.1103523108. Epub 2011 Aug 8.
7
Engineering of an "unnatural" natural product by swapping polyketide synthase domains in Aspergillus nidulans.
J Am Chem Soc. 2011 Aug 31;133(34):13314-6. doi: 10.1021/ja205780g. Epub 2011 Aug 10.
8
A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans.
FEMS Microbiol Lett. 2011 Aug;321(2):157-66. doi: 10.1111/j.1574-6968.2011.02327.x. Epub 2011 Jun 27.
9
Fix the antibiotics pipeline.
Nature. 2011 Apr 7;472(7341):32. doi: 10.1038/472032a.
10
FIMO: scanning for occurrences of a given motif.
Bioinformatics. 2011 Apr 1;27(7):1017-8. doi: 10.1093/bioinformatics/btr064. Epub 2011 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验