Abteilung für Molekulare Mikrobiologie & Genetik, Institut für Mikrobiologie & Genetik, Georg August Universität, Göttingen, Germany.
Appl Environ Microbiol. 2012 Dec;78(23):8234-44. doi: 10.1128/AEM.01808-12. Epub 2012 Sep 21.
The genomes of filamentous fungi comprise numerous putative gene clusters coding for the biosynthesis of chemically and structurally diverse secondary metabolites (SMs), which are rarely expressed under laboratory conditions. Previous approaches to activate these genes were based primarily on artificially targeting the cellular protein synthesis apparatus. Here, we applied an alternative approach of genetically impairing the protein degradation apparatus of the model fungus Aspergillus nidulans by deleting the conserved eukaryotic csnE/CSN5 deneddylase subunit of the COP9 signalosome. This defect in protein degradation results in the activation of a previously silenced gene cluster comprising a polyketide synthase gene producing the antibiotic 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)benzaldehyde (DHMBA). The csnE/CSN5 gene is highly conserved in fungi, and therefore, the deletion is a feasible approach for the identification of new SMs.
丝状真菌的基因组包含许多推测的基因簇,这些基因簇编码化学和结构上多样化的次生代谢物(SMs)的生物合成,这些基因簇在实验室条件下很少表达。以前激活这些基因的方法主要基于人工靶向细胞蛋白质合成装置。在这里,我们通过删除保守的真核 COP9 信号体的 csnE/CSN5 去泛素化酶亚基,应用了一种通过遗传破坏模型真菌构巢曲霉的蛋白质降解装置的替代方法。这种蛋白质降解的缺陷导致先前沉默的基因簇的激活,该基因簇包含一个产生抗生素 2,4-二羟基-3-甲基-6-(2-氧代丙基)苯甲醛(DHMBA)的聚酮合酶基因。csnE/CSN5 基因在真菌中高度保守,因此,缺失是鉴定新 SMs 的可行方法。