School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, USA.
Phys Rev Lett. 2012 Aug 31;109(9):095505. doi: 10.1103/PhysRevLett.109.095505. Epub 2012 Aug 30.
We introduce a general, efficient method to completely describe the topology of individual grains, bubbles, and cells in three-dimensional polycrystals, foams, and other multicellular microstructures. This approach is applied to a pair of three-dimensional microstructures that are often regarded as close analogues in the literature: one resulting from normal grain growth (mean curvature flow) and another resulting from a random Poisson-Voronoi tessellation of space. Grain growth strongly favors particular grain topologies, compared with the Poisson-Voronoi model. Moreover, the frequencies of highly symmetric grains are orders of magnitude higher in the grain growth microstructure than they are in the Poisson-Voronoi one. Grain topology statistics provide a strong, robust differentiator of different cellular microstructures and provide hints to the processes that drive different classes of microstructure evolution.
我们介绍了一种通用且高效的方法,可以完全描述三维多晶体、泡沫和其他多细胞微结构中单个晶粒、气泡和细胞的拓扑结构。该方法应用于一对在文献中常被视为相似的三维微结构:一个是由正常晶粒生长(平均曲率流)产生的,另一个是由空间的随机 Poisson-Voronoi 镶嵌产生的。与 Poisson-Voronoi 模型相比,晶粒生长强烈倾向于特定的晶粒拓扑。此外,在晶粒生长微结构中,高度对称晶粒的频率比 Poisson-Voronoi 模型中高几个数量级。晶粒拓扑统计数据为不同的细胞微结构提供了强有力的、稳健的区分,并为驱动不同类别的微结构演化的过程提供了线索。