Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS Brazil.
Phys Rev Lett. 2012 Jun 15;108(24):248301. doi: 10.1103/PhysRevLett.108.248301. Epub 2012 Jun 14.
We study the topology and geometry of two-dimensional coarsening foam with an arbitrary liquid fraction. To interpolate between the dry limit described by von Neumann's law and the wet limit described by Marqusee's equation, the relevant bubble characteristics are the Plateau border radius and a new variable: the effective number of sides. We propose an equation for the individual bubble growth rate as the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau border interfaces. The resulting prediction is successfully tested, without an adjustable parameter, using extensive bidimensional Potts model simulations. The simulations also show that a self-similar growth regime is observed at any liquid fraction, and they also determine how the average size growth exponent, side number distribution, and relative size distribution interpolate between the extreme limits. Applications include concentrated emulsions, grains in polycrystals, and other domains with coarsening that is driven by curvature.
我们研究了具有任意液体分数的二维粗化泡沫的拓扑和几何结构。为了在 von Neumann 定律描述的干燥极限和 Marqusee 方程描述的湿润极限之间进行插值,相关的气泡特征是 Plateau 边界半径和一个新的变量:有效边数。我们提出了一个用于单个气泡增长率的方程,该方程是通过气泡-气泡界面和气泡-Plateau 边界界面的增长率的加权和。使用广泛的二维 Potts 模型模拟成功地测试了这一预测,没有可调参数。模拟还表明,在任何液体分数下都观察到自相似增长阶段,并且它们还确定了平均尺寸增长指数、边数分布和相对尺寸分布如何在极端极限之间进行插值。应用包括浓缩乳液、多晶体内的晶粒以及其他由曲率驱动的粗化的域。