Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Rev Lett. 2012 May 11;108(19):190602. doi: 10.1103/PhysRevLett.108.190602. Epub 2012 May 8.
A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.
现代热力学中的一个基本问题是,分子尺度的机器如何在远离热平衡的情况下进行有用的工作,同时又不会过度耗散。为此,我们推导出一个摩擦张量,它在热力学状态空间上诱导出一个黎曼流形。在线性响应 regime 中,这种度量结构控制着有限时间变换的耗散,并赋予最优协议许多有用的特性。我们讨论了与现有热力学长度形式主义的联系,并通过在一个简单的非平衡模型中求解最优控制参数协议,展示了这种度量的实用性。