Zulkowski Patrick R, Sivak David A, Crooks Gavin E, DeWeese Michael R
Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):041148. doi: 10.1103/PhysRevE.86.041148. Epub 2012 Oct 26.
A deeper understanding of nonequilibrium phenomena is needed to reveal the principles governing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic system is driven from equilibrium then, in the linear response regime, the space of controllable parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this geometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle diffusing in a one-dimensional harmonic potential, where the spring constant, inverse temperature, and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Riemannian manifold and reveal that this simple model has a surprisingly rich geometry. We test these optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate that the friction tensor arises naturally from a first-order expansion in temporal derivatives of the control parameters, without appealing directly to linear response theory.
为了揭示支配自然和合成分子机器的原理,需要对非平衡现象有更深入的理解。最近的研究表明,当一个热力学系统被驱动远离平衡态时,在线性响应区域,可控参数空间具有由广义摩擦张量诱导的黎曼几何。我们利用这一几何见解,为在一维谐振子势中扩散的粒子构建最小耗散协议的闭式表达式,其中同时调整弹簧常数、逆温度和阱位置。这些最优协议是黎曼流形上的测地线,表明这个简单模型具有惊人丰富的几何结构。我们通过福克 - 普朗克方程的数值实现来测试这些最优协议,并证明摩擦张量自然地源于控制参数时间导数的一阶展开,而无需直接诉诸线性响应理论。