Suppr超能文献

非平衡系统中的最优控制:伊辛模型的动态黎曼几何

Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model.

作者信息

Rotskoff Grant M, Crooks Gavin E

机构信息

Biophysics Graduate Group, University of California, Berkeley, California 94720, USA.

Molecular Biophysics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):060102. doi: 10.1103/PhysRevE.92.060102. Epub 2015 Dec 17.

Abstract

A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.

摘要

对非平衡系统中最优控制的全面理解将阐明生物和人工纳米级机器的运行原理。最近的研究表明,由线性响应协议驱动至非平衡态的系统具有与广义磁化率相关的黎曼度量,并且该流形上的测地线是具有最低可实现耗散的非平衡控制协议。尽管这个优雅的数学框架激发了对精确可解系统的大量研究,但当无法通过解析方法导出度量时,尚未存在对热力学几何的描述。在此,我们通过数值方法构建二维伊辛模型的动态度量,以研究反转净磁化的最优协议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验