Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany.
Phys Rev Lett. 2012 May 11;108(19):194102. doi: 10.1103/PhysRevLett.108.194102. Epub 2012 May 8.
We propose a graphical notation by which certain spectral properties of complex systems can be rewritten concisely and interpreted topologically. Applying this notation to analyze the stability of a class of networks of coupled dynamical units, we reveal stability criteria on all scales. In particular, we show that in systems such as the Kuramoto model the Coates graph of the Jacobian matrix must contain a spanning tree of positive elements for the system to be locally stable.
我们提出了一种图形符号表示法,通过它可以简洁地重写复杂系统的某些谱性质,并从拓扑学角度进行解释。将这种符号表示法应用于分析一类耦合动力单元网络的稳定性,我们揭示了各尺度上的稳定性判据。具体来说,我们表明,在诸如 Kuramoto 模型这样的系统中,雅可比矩阵的 Coates 图必须包含一个正元的生成树,系统才是局部稳定的。