Fakultät für Physik and CeNS, Ludwig-Maximilians-Universität München, D-80539 München, Germany.
Phys Rev Lett. 2012 May 11;108(19):197403. doi: 10.1103/PhysRevLett.108.197403. Epub 2012 May 9.
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.
在自组装量子点中,最低能量激子跃迁的共振光学激发导致核自旋极化,这与众所周知的光学定向现象有本质的不同。通过进行一系列全面的实验,我们证明了在外部磁场有限的情况下,核自旋极化表现为高能塞曼跃迁锁定到驱动激光场,以及避免低能塞曼支的共振条件。我们基于源于非共线超精细相互作用的动态核自旋极化来解释我们的发现,并发现实验和理论之间非常吻合。我们的结果不仅为非共线超精细过程对核自旋扩散和衰减的重要性提供了证据,而且为电子-核自旋系统中核自旋极化的建立动力学提供了证据。