Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.
Phys Rev Lett. 2012 May 25;108(21):211101. doi: 10.1103/PhysRevLett.108.211101. Epub 2012 May 21.
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
我们考虑了一类基于多台原子干涉仪的引力波探测器,这些干涉仪通过大基线分隔,并由公共激光系统参考。我们计算了由于光源的固有相位噪声、光源的非惯性运动以及原子散粒噪声导致的这些探测器的灵敏度限制,并将其与传统的光干涉仪的灵敏度限制进行了比较。我们发现,原子干涉仪和光干涉仪受到固有相位噪声的限制几乎是相同的,而且两者都需要类似的缓解策略(例如,多臂仪器)才能达到有趣的灵敏度。光源运动引起的灵敏度限制略有不同,原则上在低频极限下有利于原子干涉仪,尽管在这两种情况下,限制都很严格。