Anders F, Idel A, Feldmann P, Bondarenko D, Loriani S, Lange K, Peise J, Gersemann M, Meyer-Hoppe B, Abend S, Gaaloul N, Schubert C, Schlippert D, Santos L, Rasel E, Klempt C
Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany.
Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany.
Phys Rev Lett. 2021 Oct 1;127(14):140402. doi: 10.1103/PhysRevLett.127.140402.
Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise is large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced atom interferometers promise unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.
与光干涉仪相比,冷原子干涉仪中的通量较低,且相关的散粒噪声较大。要突破这些限制实现更高的灵敏度,需要制备处于不同动量模式的纠缠原子。在此,我们展示了一种与最先进的干涉仪兼容的纠缠原子源。纠缠从玻色 - 爱因斯坦凝聚体的自旋自由度转移到分离良好的动量模式,通过 -3.1(8) dB 的压缩参数得以证实。纠缠增强的原子干涉仪有望为量子梯度仪或引力波探测器带来前所未有的灵敏度。