School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2012 Jun 1;108(22):226104. doi: 10.1103/PhysRevLett.108.226104. Epub 2012 May 30.
We consider the sticking of a fluid-immersed colloidal particle with a substrate coated by polymeric tethers, a model for soft, wet adhesion in many natural and artificial systems. Our theory accounts for the kinetics of binding, the elasticity of the tethers, and the hydrodynamics of fluid drainage between the colloid and the substrate, characterized by three dimensionless parameters: the ratio of the viscous drainage time to the kinetics of binding, the ratio of elastic to thermal energies, and the size of the particle relative to the height of the polymer brush. For typical experimental parameters and discrete families of tethers, we find that adhesion proceeds via punctuated steps, where rapid transitions to increasingly bound states are separated by slow aging transients, consistent with recent observations. Our results also suggest that the bound particle is susceptible to fluctuation-driven instabilities parallel to the substrate.
我们研究了浸没在胶体颗粒中的胶体颗粒与涂有聚合物的基底之间的粘性附着,这是许多自然和人工系统中软湿附着的模型。我们的理论考虑了结合的动力学、聚合物的弹性以及胶体和基底之间流体排出的流体动力学,其特征由三个无维参数表示:粘性排水时间与结合动力学的比值、弹性与热能的比值以及胶体颗粒的尺寸与聚合物刷高度的比值。对于典型的实验参数和离散的聚合物种类,我们发现附着过程是通过间歇性步骤进行的,其中快速转变到越来越束缚的状态被缓慢的老化瞬态隔开,这与最近的观察结果一致。我们的结果还表明,束缚的胶体颗粒容易受到平行于基底的波动驱动不稳定性的影响。