The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India.
Phys Rev Lett. 2012 Oct 12;109(15):158302. doi: 10.1103/PhysRevLett.109.158302. Epub 2012 Oct 10.
We simulate the nonlocal Stokesian hydrodynamics of an elastic filament which is active due a permanent distribution of stresslets along its contour. A bending instability of an initially straight filament spontaneously breaks flow symmetry and leads to autonomous filament motion which, depending on conformational symmetry, can be translational or rotational. At high ratios of activity to elasticity, the linear instability develops into nonlinear fluctuating states with large amplitude deformations. The dynamics of these states can be qualitatively understood as a superposition of translational and rotational motion associated with filament conformational modes of opposite symmetry. Our results can be tested in molecular-motor filament mixtures, synthetic chains of autocatalytic particles, or other linearly connected systems where chemical energy is converted to mechanical energy in a fluid environment.
我们模拟了弹性丝的非局部 Stokes 流体动力学,该弹性丝由于其轮廓上存在永久的应力分布而处于活跃状态。最初的直线丝的弯曲不稳定性会自发地破坏流动对称性,并导致自主的丝运动,根据构象对称性,这种运动可以是平移的或旋转的。在活性与弹性的高比值下,线性不稳定性会发展成具有大振幅变形的非线性脉动状态。这些状态的动力学可以定性地理解为与丝构象模式相反的平移和旋转运动的叠加。我们的结果可以在分子马达丝混合物、自催化粒子的合成链或其他线性连接的系统中进行测试,这些系统在流体环境中将化学能转化为机械能。