Suppr超能文献

最优异质性的编码在尖峰神经网络。

Optimal heterogeneity for coding in spiking neural networks.

机构信息

Department of Physics and Center for Neural Dynamics, University of Ottawa, 150 Louis Pasteur, K1N-6N5 Ottawa, Ontario, Canada.

出版信息

Phys Rev Lett. 2012 Jun 1;108(22):228102. doi: 10.1103/PhysRevLett.108.228102. Epub 2012 May 29.

Abstract

The effect of cellular heterogeneity on the coding properties of neural populations is studied analytically and numerically. We find that heterogeneity decreases the threshold for synchronization, and its strength is nonlinearly related to the network mean firing rate. In addition, conditions are shown under which heterogeneity optimizes network information transmission for either temporal or rate coding, with high input frequencies leading to different effects for each coding strategy. The results are shown to be robust for more realistic conditions.

摘要

细胞异质性对神经群体编码特性的影响进行了分析和数值研究。我们发现,异质性会降低同步的阈值,其强度与网络平均发放率呈非线性关系。此外,还展示了在何种条件下异质性可以优化网络的信息传递,无论是用于时间编码还是率编码,高输入频率对每种编码策略都会产生不同的影响。结果表明,在更现实的条件下,这些结果是稳健的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验