Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611.
Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20815.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2311885121. doi: 10.1073/pnas.2311885121. Epub 2024 Jan 10.
The brain is composed of complex networks of interacting neurons that express considerable heterogeneity in their physiology and spiking characteristics. How does this neural heterogeneity influence macroscopic neural dynamics, and how might it contribute to neural computation? In this work, we use a mean-field model to investigate computation in heterogeneous neural networks, by studying how the heterogeneity of cell spiking thresholds affects three key computational functions of a neural population: the gating, encoding, and decoding of neural signals. Our results suggest that heterogeneity serves different computational functions in different cell types. In inhibitory interneurons, varying the degree of spike threshold heterogeneity allows them to gate the propagation of neural signals in a reciprocally coupled excitatory population. Whereas homogeneous interneurons impose synchronized dynamics that narrow the dynamic repertoire of the excitatory neurons, heterogeneous interneurons act as an inhibitory offset while preserving excitatory neuron function. Spike threshold heterogeneity also controls the entrainment properties of neural networks to periodic input, thus affecting the temporal gating of synaptic inputs. Among excitatory neurons, heterogeneity increases the dimensionality of neural dynamics, improving the network's capacity to perform decoding tasks. Conversely, homogeneous networks suffer in their capacity for function generation, but excel at encoding signals via multistable dynamic regimes. Drawing from these findings, we propose intra-cell-type heterogeneity as a mechanism for sculpting the computational properties of local circuits of excitatory and inhibitory spiking neurons, permitting the same canonical microcircuit to be tuned for diverse computational tasks.
大脑由相互作用的神经元组成的复杂网络组成,这些神经元在生理学和脉冲特征上表现出相当大的异质性。这种神经异质性如何影响宏观神经动力学,以及它如何有助于神经计算?在这项工作中,我们使用平均场模型来研究异质神经网络中的计算,通过研究细胞脉冲阈值的异质性如何影响神经群体的三个关键计算功能:神经信号的门控、编码和解码。我们的结果表明,异质性在不同的细胞类型中具有不同的计算功能。在抑制性中间神经元中,改变脉冲阈值异质性的程度可以使它们在相互耦合的兴奋性群体中门控神经信号的传播。而同质的中间神经元施加同步的动力学,缩小兴奋性神经元的动态范围,异质的中间神经元作为抑制性偏移,同时保持兴奋性神经元的功能。脉冲阈值异质性还控制神经网络对周期性输入的适应特性,从而影响突触输入的时间门控。在兴奋性神经元中,异质性增加了神经动力学的维数,提高了网络执行解码任务的能力。相反,同质网络在功能生成能力方面存在不足,但在通过多稳态动态状态对信号进行编码方面表现出色。根据这些发现,我们提出细胞内异质性作为调节兴奋性和抑制性脉冲神经元局部回路计算特性的机制,允许相同的典型微电路针对不同的计算任务进行调整。