Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada.
Neuron. 2013 Jun 5;78(5):758-72. doi: 10.1016/j.neuron.2013.05.030.
Neural networks are more than the sum of their parts, but the properties of those parts are nonetheless important. For instance, neuronal properties affect the degree to which neurons receiving common input will spike synchronously, and whether that synchrony will propagate through the network. Stimulus-evoked synchrony can help or hinder network coding depending on the type of code. In this Perspective, we describe how spike initiation dynamics influence neuronal input-output properties, how those properties affect synchronization, and how synchronization affects network coding. We propose that synchronous and asynchronous spiking can be used to multiplex temporal (synchrony) and rate coding and discuss how pyramidal neurons would be well suited for that task.
神经网络不是其各部分的简单加和,但这些部分的特性仍然很重要。例如,神经元的特性会影响接收共同输入的神经元同步发放的程度,以及这种同步是否会在网络中传播。根据编码类型的不同,刺激诱发的同步可以帮助或阻碍网络编码。在本观点文章中,我们描述了发放起始动力学如何影响神经元的输入-输出特性,这些特性如何影响同步,以及同步如何影响网络编码。我们提出,同步和异步发放可以用于时分(同步)和率编码的多路复用,并讨论了锥体细胞如何非常适合完成这项任务。