Suppr超能文献

神经元特性对网络编码的影响:锋电位起始动力学和稳健同步传递的作用。

Impact of neuronal properties on network coding: roles of spike initiation dynamics and robust synchrony transfer.

机构信息

Neurosciences and Mental Health, The Hospital for Sick Children and Department of Physiology, University of Toronto, Toronto, ON M5G 1X8, Canada.

出版信息

Neuron. 2013 Jun 5;78(5):758-72. doi: 10.1016/j.neuron.2013.05.030.

Abstract

Neural networks are more than the sum of their parts, but the properties of those parts are nonetheless important. For instance, neuronal properties affect the degree to which neurons receiving common input will spike synchronously, and whether that synchrony will propagate through the network. Stimulus-evoked synchrony can help or hinder network coding depending on the type of code. In this Perspective, we describe how spike initiation dynamics influence neuronal input-output properties, how those properties affect synchronization, and how synchronization affects network coding. We propose that synchronous and asynchronous spiking can be used to multiplex temporal (synchrony) and rate coding and discuss how pyramidal neurons would be well suited for that task.

摘要

神经网络不是其各部分的简单加和,但这些部分的特性仍然很重要。例如,神经元的特性会影响接收共同输入的神经元同步发放的程度,以及这种同步是否会在网络中传播。根据编码类型的不同,刺激诱发的同步可以帮助或阻碍网络编码。在本观点文章中,我们描述了发放起始动力学如何影响神经元的输入-输出特性,这些特性如何影响同步,以及同步如何影响网络编码。我们提出,同步和异步发放可以用于时分(同步)和率编码的多路复用,并讨论了锥体细胞如何非常适合完成这项任务。

相似文献

5
Dynamics of spiking neurons: between homogeneity and synchrony.脉冲神经元的动力学:在同质性与同步性之间
J Comput Neurosci. 2013 Jun;34(3):433-60. doi: 10.1007/s10827-012-0429-1. Epub 2012 Oct 25.
7
Distributed synchrony in a cell assembly of spiking neurons.发放神经元细胞集合中的分布式同步。
Neural Netw. 2001 Jul-Sep;14(6-7):815-24. doi: 10.1016/s0893-6080(01)00044-2.
8
Rate-synchrony relationship between input and output of spike trains in neuronal networks.神经网络中尖峰序列输入与输出之间的速率同步关系。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011917. doi: 10.1103/PhysRevE.81.011917. Epub 2010 Jan 28.
9
Optimal heterogeneity for coding in spiking neural networks.最优异质性的编码在尖峰神经网络。
Phys Rev Lett. 2012 Jun 1;108(22):228102. doi: 10.1103/PhysRevLett.108.228102. Epub 2012 May 29.
10
Establishing a Statistical Link between Network Oscillations and Neural Synchrony.建立网络振荡与神经同步之间的统计联系。
PLoS Comput Biol. 2015 Oct 14;11(10):e1004549. doi: 10.1371/journal.pcbi.1004549. eCollection 2015 Oct.

引用本文的文献

1
Input/Output Relationships for the Primary Hippocampal Circuit.初级海马回路的输入/输出关系。
J Neurosci. 2025 Jan 8;45(2):e0130242024. doi: 10.1523/JNEUROSCI.0130-24.2024.
6
Reproducible and fully automated testing of nocifensive behavior in mice.在小鼠中进行可重现且全自动的伤害性行为测试。
Cell Rep Methods. 2023 Dec 18;3(12):100650. doi: 10.1016/j.crmeth.2023.100650. Epub 2023 Nov 21.

本文引用的文献

1
Noise suppression and surplus synchrony by coincidence detection.通过吻合检测实现噪声抑制和剩余同步。
PLoS Comput Biol. 2013 Apr;9(4):e1002904. doi: 10.1371/journal.pcbi.1002904. Epub 2013 Apr 4.
2
Reading and writing the neural code.读取和写入神经码。
Nat Neurosci. 2013 Mar;16(3):259-63. doi: 10.1038/nn.3330. Epub 2013 Feb 25.
3
Inhibition dominates sensory responses in the awake cortex.在清醒的大脑皮层中,抑制作用占主导地位。
Nature. 2013 Jan 3;493(7430):97-100. doi: 10.1038/nature11665. Epub 2012 Nov 21.
5
Decorrelation of neural-network activity by inhibitory feedback.通过抑制性反馈使神经网络活动去相关。
PLoS Comput Biol. 2012 Aug;8(8):e1002596. doi: 10.1371/journal.pcbi.1002596. Epub 2012 Aug 2.
6
Information filtering by synchronous spikes in a neural population.神经群体中同步尖峰进行的信息过滤
J Comput Neurosci. 2013 Apr;34(2):285-301. doi: 10.1007/s10827-012-0421-9. Epub 2012 Sep 12.
7
Computing with neural synchrony.神经同步计算。
PLoS Comput Biol. 2012;8(6):e1002561. doi: 10.1371/journal.pcbi.1002561. Epub 2012 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验