Suppr超能文献

二维随机泡沫的统计力学:小无序或大无序极限下的几何 - 拓扑相关性

Statistical mechanics of two-dimensional shuffled foams: geometry-topology correlation in small or large disorder limits.

作者信息

Durand Marc, Kraynik Andrew M, van Swol Frank, Käfer Jos, Quilliet Catherine, Cox Simon, Ataei Talebi Shirin, Graner François

机构信息

Matière et Systèmes Complexes (MSC), 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062309. doi: 10.1103/PhysRevE.89.062309. Epub 2014 Jun 19.

Abstract

Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010)] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011)]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.

摘要

气泡单层是用于研究可变形物体二维堆积问题的实验和模拟的模型系统。我们探索了在低液体分数极限下气泡边数(拓扑结构)分布与气泡面积(几何形状)分布之间的关系。我们使用了一个考虑了普拉托定律的统计模型[M. 杜兰德,《欧洲物理快报》90, 60002 (2010)]。我们预测了在广泛的气泡尺寸分散范围内几何无序(气泡尺寸分散度)与拓扑无序(气泡边数分布宽度)之间的相关性。来自随机泡沫实验、表面演化器模拟和细胞Potts模型模拟的大量数据集都惊人地吻合,并且与模型预测相符,即使在极高的尺寸分散度下也是如此。在中等尺寸分散度下,我们恢复了我们早期的近似预测[M. 杜兰德,J. 卡费尔,C. 基利埃,S. 考克斯,S. A. 塔莱比,和F. 格拉内尔,《物理评论快报》107, 168304 (2011)]。在极低分散度下,当接近完美规则的蜂窝图案时,我们研究几何和拓扑无序如何消失。我们确定了一种结晶机制,并在双分散泡沫的情况下对其进行了定量探索。由于气泡的可变形性,泡沫比硬盘在更大的尺寸分散范围内能够结晶。该模型预测,当最大气泡半径与最小气泡半径之比为1.4时,会发生结晶转变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验