Sonnenschein Bernard, Schimansky-Geier Lutz
Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051116. doi: 10.1103/PhysRevE.85.051116. Epub 2012 May 14.
We study networks of noisy phase oscillators whose nodes are characterized by random degrees counting the number of their connections. Both these degrees and the natural frequencies of the oscillators are distributed according to a given probability density. Replacing the randomly connected network by an all-to-all coupled network with weighted edges allows us to formulate the dynamics of a single oscillator coupled to the mean field and to derive the corresponding Fokker-Planck equation. From the latter we calculate the critical coupling strength for the onset of synchronization as a function of the noise intensity, the frequency distribution, and the first two moments of the degree distribution. Our approach is applied to a dense small-world network model, for which we calculate the degree distribution. Numerical simulations prove the validity of the replacement. We also test the applicability to more sparsely connected networks and formulate homogeneity and absence of correlations in the degree distribution as limiting factors of our approach.
我们研究了由噪声相位振荡器组成的网络,其节点的特征是具有随机度数,该度数统计其连接的数量。这些度数以及振荡器的固有频率均根据给定的概率密度分布。用具有加权边的全连接网络取代随机连接的网络,使我们能够制定单个振荡器与平均场耦合的动力学,并推导出相应的福克 - 普朗克方程。从后者我们计算同步开始时的临界耦合强度,它是噪声强度、频率分布以及度数分布的前两个矩的函数。我们的方法应用于一个密集的小世界网络模型,为此我们计算了度数分布。数值模拟证明了这种替换的有效性。我们还测试了该方法对连接更稀疏网络的适用性,并将度数分布中的均匀性和无相关性表述为我们方法的限制因素。