Carro Adrián, Toral Raúl, San Miguel Maxi
IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, Campus Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain.
Sci Rep. 2016 Apr 20;6:24775. doi: 10.1038/srep24775.
We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an annealed approximation for uncorrelated networks, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity--variance of the underlying degree distribution--has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of inferring the degree heterogeneity of the underlying network by observing only the aggregate behavior of the system as a whole, an issue of interest for systems where only macroscopic, population level variables can be measured.
我们提出一种新的分析方法,用于研究复杂网络上的随机二态模型。超越通常的平均场理论,这种替代方法基于对不相关网络引入退火近似,从而能够将网络结构视为参数异质性来处理。作为示例,我们研究噪声选民模型,它是原始选民模型的一种修改形式,包含状态的随机变化。所提出的方法不仅能够揭示模型对平均度(平均场预测)的依赖性,还能揭示其对度分布上更复杂平均值的依赖性。特别地,我们发现度异质性——基础度分布的方差——对模型中发生的噪声诱导有限尺寸转变的临界点位置、系统的局部有序性以及其时间相关性的函数形式都有强烈影响。最后,我们展示了这最后一点如何开启了仅通过观察系统整体的聚合行为来推断基础网络度异质性的可能性,这对于只能测量宏观群体水平变量的系统来说是一个有趣的问题。