Suppr超能文献

双曲格上的交叉

Crossing on hyperbolic lattices.

作者信息

Gu Hang, Ziff Robert M

机构信息

Michigan Center for Theoretical Physics and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 1):051141. doi: 10.1103/PhysRevE.85.051141. Epub 2012 May 29.

Abstract

We divide the circular boundary of a hyperbolic lattice into four equal intervals and study the probability of a percolation crossing between an opposite pair as a function of the bond occupation probability p. We consider the {7,3} (heptagonal), enhanced or extended binary tree (EBT), the EBT-dual, and the {5,5} (pentagonal) lattices. We find that the crossing probability increases gradually from 0 to 1 as p increases from the lower p_{l} to the upper p_{u} critical values. We find bounds and estimates for the values of p_{l} and p_{u} for these lattices and identify the self-duality point p corresponding to where the crossing probability equals 1/2. Comparison is made with recent numerical and theoretical results.

摘要

我们将双曲晶格的圆形边界划分为四个相等的区间,并研究作为键占据概率(p)的函数的相对对之间渗流交叉的概率。我们考虑{7,3}(七边形)、增强或扩展二叉树(EBT)、EBT对偶以及{5,5}(五边形)晶格。我们发现,随着(p)从较低的(p_{l})临界值增加到较高的(p_{u})临界值,交叉概率从0逐渐增加到1。我们找到了这些晶格的(p_{l})和(p_{u})值的界限和估计,并确定了交叉概率等于1/2时对应的自对偶点(p)。与最近的数值和理论结果进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验